Solving the Entailment Problem in the Fluent
Calculus using Binary Decision Diagrams

Steffen Holldobler and Hans—Peter Storr

Artificial Intelligence Institute
Department of Computer Science
Dresden University of Technology

Abstract. It is rigorously shown how planning problems encoded as
entailment problems in the fluent calculus can be mapped onto satisfia-
bility problems for propositional formulas, which in turn can be mapped
to the problem of finding models using binary decision diagrams. The
mapping is shown to be sound and complete. First experimental results
of an implementation are presented and discussed.

1 Introduction

In recent years propositional methods have seen a surprising revival in the field
of Intellectics. Greedy satisfiability testing and its variants [14] and the various
procedures for answer set computing (e.g. [13,7]) are just two examples. On the
other hand, very few results are reported so far on applying another proposi-
tional method, viz., model checking using binary decision diagrams (BDDs), to
problems in Intellectics with [4, 5] being an exception. This comes to a surprise
because model checking using BDDs has significantly improved the performance
of algorithms and enabled the solution of new classes of problems in areas like
formal verification and logic synthesis (see e.g. [2,3]). Can we adopt the technol-
ogy developed for model checking of finite state machines using binary decision
diagrams for, say, problems occurring in reasoning about situations, actions and
causality? Can we enrich these techniques by exploiting the experiences made in
the state of the art implementations of propositional logic calculi and systems
mentioned at the beginning of this paragraph?

This paper reports on an attempt to find answers for these and related ques-
tions in the context of the fluent calculus. The fluent calculus is a formal system
for reasoning about situations, actions and causality which admits a well-defined
semantics as given in [9] and [17]. In Section 2 a restricted fragment of the fluent
calculus is considered, which allows for the specification of planning problems
as entailment problems in the spirit of [11]. In Section 3 a transformation is for-
mally defined which maps these entailment problems onto satisfiability problems
in propositional logic. The mapping is shown to be sound and complete. Thus,
the decidability of the abovementioned fragment of the fluent calculus is estab-
lished. In Section 4 it is shown how the shortest plan solving the given planning
problem can be extracted from the propositional encoding. Finally, in Section 5
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Table 1. Notational conventions.

first and promising findings of an implementation using BDDs are presented. In
this implementation, the propositional logic formulas are represented by reduced
and ordered BDDs and techniques from model checking are applied to search for
models. A discussion of the achieved results in Section 6 concludes the paper.
Due to lack of space most of the proofs had to be omitted. They can be found
in detail in [10].

2 Foundations

In this section some notions and notations concerning logics, planning problems,
the fluent calculus and binary decision diagrams are presented.

2.1 Logics

Let XYy, Xr and Yp denote disjunct sets of variables, function symbols and
predicate symbols respectively. Xy is countably infinite, whereas Xr and Xp
are finite. The set of (first order) formulas is denoted by L(Xy UXpUXp); we
abbreviate this set by L if the sets Xy, Yr and Xp can be determined from
the context. ¢ denotes a substitution and Xo¢ the instance of the syntactic
object X under o.

Table 1 depicts some notational conventions in the sense that, for example,
whenever we use z, we implicitly assume z € Yy, g:. The sets Yp;, Yy,s¢,
vk, Yv,sit as well as constructor state terms are defined in Section 2.3. All
symbols are possibly indexed.

The entailment problem F |= F consists of a set F of formulas and a
formula F and is the question whether F entails F .

2.2 Planning

In this paper we consider planning problems having the following properties: (i)
The set of states is characterized by a set of propositional fluents, i.e., a set of
propositional variables, which can take values out of the set {T, L} of truth val-
ues. (ii) The actions are deterministic and their preconditions as well as effects
depend only on the state they are executed in. (iii) The goal of the planning
problem is a property which depends solely on the reached state. This class of
problems corresponds to the problems from track 1 and 2 of the planning com-
petition held at the 4th International Conference on Artificial Planning Systems
(AIPS98). There, planning problems were formulated within a language called
PDDL [8]. Unfortunately, PDDL lacks a formal semantics. As shown in [15] this
can be rectified by a translation from PDDL into the fluent calculus.



As an example for such a the problem consider the so—called GRIPPER class:
A robot equipped with two grippers G1 and G2 can move between two rooms
A and B . Initially the robot is in room A together with a number of balls
By, ...,B, . The task is to transport these balls into room B . The problems
differ wrt the number of balls and are then called GRIPPER—1, GRIPPER—2.

2.3 The Fluent Calculus

The fluent calculus is a calculus for reasoning about situations, actions and
causality. It is based on the idea to consider states as multi—sets of fluents and
to represent such states on the term level. The latter is done with the help of a
binary function symbol o, which is associative, commutative and has a constant
() as unit element [9,17] but is not idempotent. In this paper we consider a
restricted version of the calculus specified in this section.

Formally, the fluent calculus is an order—sorted calculus with sorts ACTION
SIT, FLUENT, and STATE and ordering constraint FLUENT < STATE . The set
Yy of variables is the union of the disjunct sets Xy 4, Yvsit, Xv,rr and
Yv,st , i-e., it consists of a countable set of variables for each sort. The set Yr
of function symbols is the union X4 U Xg;; U Xy U X U X, where X4 is
a set of function symbols denoting action names, YXg; = {Sp, do} is the set of
function symbols denoting situations, Xp; is a set of constant symbols denoting
fluent names, Xg; = {{}, o, state} is the set of function symbols denoting states.
All sets are mutually disjoint and finite. The mentioned function symbols are
sorted as follows:

Sp : SIT o : STATE X STATE — STATE () : STATE
do : ACTION X SIT — SIT state : SIT — STATE
The set Xp of predicate symbols contains only the equality = with sort

STATE X STATE . The macros holds and set with sorts FLUENT X SIT and STATE
respectively are often used:

holds(f,s) = (32) state(s) = foz (1)

set(z) 2 ~(3f,2) 2 =fofoz

The language Lpc of the fluent calculus is the set of all well-formed and
well-sorted first—order formulas over the given alphabet. State terms of the form
fofio...ofm, where fi,...,fm € FLUENT, m > 0, are pairwise distinct, are
called constructor state terms.

The axioms F of the fluent calculus considered in this paper are the union
funU}—mset U]:So U]:msU]:su-

— Fun is aset of unique name assumption for fluents combined with a domain
closure axiom for fluents:

Fun ={~fr=fo| fr, fo € X and fi # f2} U{(Vg) \/ g=1f}.

fEXm



— Fmset 18 a set of axioms ensuring that terms of the sort STATE denote
multisets of fluents.! It consists of the following formulas:
e the standard axioms of equality
e the axioms AC1 for o and 0:

(Vz) zo ) =z
(Vz1, 22) 21029 = 29021
(V2’1, 22, 2’3) (2’1 o 2’2) 0ZzZ3 =210 (2’2 o 2’3)

e an axiom that guarantees that fluents and () are the only irreducible
elements of o:

(V2)[(Fg) z2=gV2z=0 & (V2',2") z2=2"02" = 2" =0 Vv ' =10
e a property known as Levi’s lemma from monoid theory:

(V21,22,23,24) 21020 = 23024
= (F2a,2b,2c,2d) 21 =24 02p N 20 = 2,024 N\ 23 =2,02. N\ 24 = 2,024

e an induction axiom:
(VP) [P(D) A (Vg,2) (P(z) = P(goz)) = (Vz) P(2)] -

— Fs, contains a single axiom &r(state(sg)) of the form state(so) =t de-
scribing the initial state, where t is a constructor state term.

— Fums contains an axiom specifying that in each state each fluent may occur
at most once:

Fms = {(Vs, z) =(3g) state(s) =gogoz}

— Fsu is the set of state update axioms of the form

Ay(s) A /\ holds(g,s) A /\ —holds(g, s)
(V) geEI— gevt ) (2)
— state(do(a,s)) o9~ = state(s) oI+

where ¥~ and 9" are constructor state terms denoting the negative and
positive direct effects of an action @ under condition A,(s) € Lpc respec-
tively, s € Yy s and (V) denotes the universal closure. A,(s) is a boolean
combination of formulas of the form holds(f,s) . In the following A(s) will
be used to denote the antecedent of (2).

To exemplify F,s and Fg, consider the GRIPPER class. There are three
actions: (i) The robot may move from one room to the other. (ii) The robot
may pick up a ball if it is in the same room as the ball and one of its grippers

M
M

! More specifically, these axioms ensure that in every model M we have that STATE
with operations @) and o isisomorphic to the set of finite multisets over FLUENT
with operations () denoting the empty multiset and multiset union (for more details
see [16])



is empty. (iii) the robot may drop a ball if it is carrying one. These actions are
specified by the state update axioms:

Fsu = { holds(at-robby(r1),s) A —holds(at-robby(rs), s)
—  state(do(move(ry,r3)), s) o at-robby(r)
= state(s) o at-robby(rs) ,

holds(at(b,r),s) A holds(at-robby(r), s)
A holds(free(g),s) N —holds(carry(b, g), s)
—  state(do(pick(b,r,g)),s) o at(b,r) o free(g)
= state(s) o carry(b, g) ,

holds(carry(b, g),s) A holds(at-robby(r), s)
A —holds(at(b,r),s) A —holds(free(g), s)
— state(do(drop(b,r,g)), s) o carry(b, g)
= state(s) o at(b,r) o free(g) }

The initial state of a GRIPPER class problem is specified by

Fs, = {state(Sp) = at(By, A)o ... 0 at(Bp,A)
o free(G1) o free(Gs) o at-robby(A) },

where n is instantiated to some number, at(z,y) denotes that ball x isin room
y, free(x) that gripper z is free and at-robby(z) that the robot is in room z .

Reasoning problems themselves are specified as entailment problems in the
fluent calculus. For the GRIPPER class we obtain the entailment problem

F E (3s) holds(at(By1,B),s) A ... A holds(at(By, B), s).
Using abbreviation (1) this can be reformulated as
F E (3s) [(F2) state(s) = at(B1,B) o z] A...N[(3z) state(s) = at(By, B) o z],
which itself is equivalent to
F E (32) [(3s) state(s) = 2] A[(32") z = at(B1,B) o...0 at(By,B)o2'].

In general, reasoning in the fluent calculus amounts to solving an entailment
problem of the form

F E (32)[(3s) z = state(s) N Pa(2)], (3)

where @ (z) is a boolean combination of terms of the form (3z'): z =2'of
for some fluent f. In other words, one is is looking for a situation, in which
some boolean combination of fluents holds. One should observe that $g(z) is
independent of F,,UFs, because it does not contain an expression of sort SIT.

The fluent calculus FC considered in this paper is restricted wrt the general
calculus as follows: (i) Only constants are allowed as as fluents. (ii) States are
effectively sets of fluents due to F,,s . (iii) The initial state is completely spec-
ified. (iv) The state update axioms specify only deterministic actions without



ramifications or other constraints. The first restriction implies that the set of
fluents is finite if Yp; is finite. The second restriction implies that there are
only finitely many different states uniquely characterized by the set of fluents,
which hold in each state, if X is finite. As will be shown in this paper these
two restrictions are sufficient conditions to ensure that the entailment problem
in FC is decidable.

2.4 Binary Decision Diagrams

The idea of BDDs is similar to decision trees: a boolean function is represented
as a rooted acyclic directed graph. The difference to decision trees is that there
is a fixed order of the occurrences of variables in each branch of the diagram,
and that isomorphic substructures of the diagram are represented only once.?
This can lead to exponential savings in space in comparison to representations
like decision trees or disjunctive or conjunctive normal form.

Bryant has shown in [1] that, given a fixed variable order, every boolean func-
tion is represented by exactly one BDD. Moreover, propositional satisfiability,
validity and equivalence problems are decidable over BDDs in linear or constant
time. Of course, the complexity of the mentioned problems does not go away:
the effort has been moved to the construction of the BDDs. But as Bryant has
shown as well, there are efficient algorithms for logical operations, substitutions,
restrictions etc. on BDDs, whose cost is in most cases proportional to the size
of its operands. BDDs may be used as a theorem prover, i.e., by constructing
a BDD corresponding to a logical formula, and checking the BDD for inter-
esting properties, but more often they are used as an implementation tool for
algorithms which are semantically based on boolean functions or, equivalently,
propositional formulas, or, via the characteristic functions, sets. In the imple-
mentation these formulas or sets are always represented as BDDs. The use of
BDDs in this paper follows this spirit.

3 Mapping the Fluent Calculus onto Propositional Logic

The envisioned implementation will recursively generate sets of states which
are reachable from an initial state by applying actions until one of these states
satisfies the goal condition. This two—step behavior is already reflected in (3):
The first conjunct expresses the fact that we are looking for a state z such
that z is obtained from state(Sp) by applying state update axioms, whereas
the second conjunct expresses the fact that in z certain fluents should or should
not hold. Starting with the first step and aiming at finding a propositional logic
characterization of F = (3s) z = state(s) a relation T(z,z') is defined which
holds iff the state z' is a successor state of z wrt the state update axioms.?

2 Thus, the BDD is ordered and reduced, also called ROBDD. These properties are
so useful that they are required in almost all BDD applications, so many authors
include these properties into the definition of BDDs.

3 This corresponds to the transition relation in finite state systems.



Moreover, this transformation allows for an encoding of the reasoning process
into propositional logic.

One should observe that after expanding the macro holds the precondition
A(s) of each state update axiom

(V) [A(s) — state(do(a,s)) o9~ = state(s) oV € Fy] (4)

effectively depends on state(s), and this term contains the only occurrences
of terms of sort SIT occurring in the precondition of (4). To explicitly express
this dependence we will write A(state(s)) instead of A(s). Making use of this
notation the expression A(z) denotes the formula A, where each occurrence of
state(s) has been replaced by z.

For each state update axiom ¢(a) of the form (4) we define

Ty(a)(2,2) = [A() A2 097 = 20 9], (5)

and for the set F,, of state update axioms we define

T(Z,ZI) = \/ Td)(a)(zazl)' (6)
d(a)EFsu

This definition is motivated by the following result.

Lemma 1. Let t and t' be two constructor state terms and F |= state(s) =t.
F | state(do(a, s)) =t iff Fun U Fmset = Toa)(t,t") for some d(a) € Fyq-

A binding of the form z/t, where ¢ is a constructor ground term is called
constructor state binding. A substitution consisting only of constructor state
bindings is called constructor state substitution. In the sequel, o will always
denote a constructor state substitution.

The task to encode entailment problems in the fluent calculus into satisfiabil-
ity problems in propositional logic seems to be impossible on the first glance, be-
cause there are infinitely many terms of the sorts SIT and FLUENT , whereas the
set of valuations of a finite propositional program is finite. Fortunately, however,
one is primarily interested in logic consequences of the form (3s) state(s) = z
in which the only free variable z is of type STATE. From axiom F,,s one learns
that the values for z may contain each fluent at most once. Because there are
only finitely many fluents in FC, the set of possible bindings for z is also finite.

More precisely, we want to show that whenever ¢ is an answer substitution
binding z for the entailment problem

F = ((39) [z = state(s) A (2)]),

then there exists a propositional valuation Bg(o) such that Bs(o) is a model for
an appropriately generated propositional logic formula. This formula is obtained
by giving an equivalent representation of the entailed formula in terms of &;(z),
T(z,2') and P (z) and specifying a mapping B which maps this representation
to a propositional formula.



The basic idea underlying Bs is as follows. Suppose Xp; = {f1,..., fm}-
Each variable z occurring in a constructor state substitution o = {z/t} is
represented by m propositional variables z¢,,...,z¢, such that in the propo-
sitional valuation v = B(o) one obtains wv(zy) = T iff f; occurs in ¢. A
formula F' is represented by a propositional formula B(F') such that a ground
constructor substitution o is an answer substitution for Fyp U Fiset = Fo iff
the valuation Bg(o) fulfills B(F). We turn now to a formal definition:

Ground constructor substitutions Let z/t be a binding of a constructor state
substitution. Then Bg(z/t) is the valuation v defined by v(z;) = T iff f
occurs in t, for all f € Xp;. Let o be a constructor state substitution. Then

U Bs(z/1).

z/t€c

Constructor state terms Let & denote the exclusive or. For each f € Xp;
define:

Bs(0) =
({g Tlfff:f'
(t1 Otg) _ B (t1) @Bf(tQ)

Goal formulas Recall that each goal formula ®;(z) is a boolean combination
of formulas of the form (3z2') 2/ = z o f. Define:

Ba((32') z=2"o f) = 2y,
Ba(-G) = -Ba(G),
Ba(GAH) =Bg(G) ABg(H).

F formulas In the proof of the Theorem 1 B has to be applied to formulas of the
following form. Let F be the set of formulas defined by (i) z =t € F and (ii) if
F(z) € F and T(z,z') asdefined in (6), then (3z) [set(z) A F(2)AT(z,2)] € F.
For this class of formulas define:

Br(z =1) = Ny, (27 © By(t))
Br((3z) [set(2) A F(2) AT(2,2")]) = B(21) rezr) Br(F(2)) A Br(T(z,2))];

where

Br(T(z,2") =V sayer.. Br(Tow)(z:2"),
Br(Tg(a)(2,2") = Ba(A(2)) AN\ jes,, Br(z'od7) & By(2097)),
(3(zf)fexp)F = (324,) ... (32, )F and
(Jz4)F = Flzy[T]V Flzy/ 1]

assuming that Br(Ty(,)(2,2')) is defined as in (5) and Yp = {f1,..., fm} .
Furthermore, in the last equation F' denotes a propositional logic formula and
Flzp/T] and F[zy/1] denote the formulas obtained from F by replacing all
occurrences of z; in F' by T and L respectively.



Initial state Recall that the initial state is characterized by a formula @1 (state(so))
with @7(z) =(z=1t).

Bi(z=1t)= /\ zf A /\ —zy

f occurs in ¢ 7 does not occur in ¢

In the sequel we will omit the index associated with B if it can be determined
from the context to which class of syntactic objects B is applied.

Lemma 2. Let F be either &;(z), ®c(z) or an F formula and o a con-
structor state substitution such that Fo does not contain any free variables.

Fun U Fmset = Fo iff B(o) = B(F).

Thus, Lemma 2 provides a way to transform a restricted subset of fluent
calculus formulas (which includes T(z,2')) into satisfiability-equivalent propo-
sitional formulas. This is the base to transform entailment problems in FC into
satisfiability problems in propositional logic. The steps of this transformation
are described in the proof of the following theorem.

Theorem 1. The entailment problem in FC can be mapped onto the satisfiability
problem in propositional logic. The mapping is sound and complete.

Proof. Consider the entailment problem in the fluent calculus:
F | (3s, z) [z = state(s) A Pg(z)].
By Fn.s this holds iff there is a constructor state substitution ¢ such that
F | (3s) [z0 = state(s) A P (z0)],
or, equivalently:
{o | F & (3s) [z0 = state(s) A Pg(z0)]}. (7)
Applying the deduction theorem we conclude that (7) is equivalent to

{0 | Frnset UFmsUFun |= /\ FA /\ F — (3s) [z0 = state(s)ADPg(z0)]} # 0.
FeFsu FeFs,
(8)

Because conjunction can be mapped onto set intersection and @ (z0) does not
depend on Fs, and Fgs, (8) is equivalent to

{0 | Frnset UFmsUFun = [\ FA J\ F = (3s) zo = state(s)}NG # 0, (9)
FeFsuy FeFs,

where
G= {U | fmset Uy:ms U]:un |: @G(ZO’)}.



Let m be the number of fluent constants. Because of axiom F,,s; there are
at most 2™ different states and because preconditions and effects of actions
depend only on the current state, the length of the shortest plan can be at most
2™ (such that every state is visited once). Thus (9) is equivalent to

{0 Frset UFms UFun = N FA N\ F
FEFsy FeFs, (10)
— Vizo(ﬂ(ai)lsign) zo = state(an ...a150)} N G # 0,
where (a;)1<i<n denotes a sequence of actions of length n . Because disjunction
can be mapped onto set union (10) is equivalent to
gm

U 2.nG #0, (11)

n=0
where

Zn = {0 | Fonaet U Fms U Fun = Apern F A Npers, F

— (Ias)i<i<n) 20 = state(an ...a1S0)}- (12)

Because state(Sp) depends only on Fg, = {®r(state(sp))} and by Lemma 1
equation (12) can be computed recursively by

Z() = {O’ | -7:mset U fms U .7:un |: ¢[(ZU)}, (13)
Zp ={0 | Fmset U Fms UFun ET(26,20),6 € Z,-1}, n > 0. (14)

With
Zo(z) = 21(2), (15)
Zn(2) = (32) [set(2) A Zn_1(2) A T(2,2)], n >0, (16)
(13) and (14) can be equivalently combined to
Zp = {0 | Fmset U Fms U Fun E Zn(z0)},n > 0. (17)
From Lemma 2 we conclude that (17) is equivalent to
20 = {0| B(0) = B(Zn(20))},n > 0. (18)

Finally, an application of Lemma 2 to G guarantees that (11) is equivalent to

U 2.0 {71 Bo) = B@a(z0))} £, (19)
n=0

where Z,, is specified in (18). This, however, is equivalent to

{o1800) E (\/ B(zn>> A B(@c(20))} #0
n=0

where Z, is specified in (15) and (16). O

The following corollary is an immediate consequence of Theorem 1 and the
decidability of propositional logic.

Corollary 1. The entailment problem in FC is decidable.



4 Plan Extraction

In a practical application it is not only relevant whether a sequence of actions
(or plan) solving the problem exists, but in most cases one would like to know
how such a plan looks like. As it turns out, it is possible to extend the decision
procedure presented in the previous section such that a plan can be recovered.
Very pleasantly, the extended algorithm returns always the shortest plan.

The main idea for extracting the plan is the following: The sets Z; con-
structed in the proof of Theorem 1 characterize the states reachable from the
initial state after i actions. Thus, if

Z;n{o | B(o) = B(®a(20))} # 0,

i.e., if Z; contains a goal state, then there must be a plan of length . The plan
can now be reconstructed step by step by taking a substitution ¢ (characterizing
a state zo ) from the intersection, computing the intersection of the set of states
from which this state may be reached and Z;_; , and repeating this process until
eventually the initial state is encountered. Thus, we find a sequence oy,...,o0,
of substitutions representing the states zog,...,z0, , where the first one is the
initial state specified by Fg, , the last one fulfills the goal & (z0,) and zoit1,
0 <i < n is reachable from the previous state z; by executing an action. The
final step is to find actions which transform each zo; to zo;41 by finding a
state update axiom @(a) such that Fo, U Frser = Ty(a) (200, 20i11) -

Algorithm 1. Let Z;, i =0 < i < 2™ be the sets computed by equation (18)
such that (19) is fulfilled. Take the smallest n such that

Z,N{o | B(o) = B(®a(20))} # 0 (20)
and choose a sequence oy, ...,0, of substitutions and a sequence aq,...,a, of
actions such that

on € Z,N{o | B(o) E B(®a(z0))}, (21)
oi—1 € Zi_1N{o | B(o) E B(T(z,z20;))} and (22)
= B(Ty(q,)(20i-1,20%)). (23)
Then s =ay,...,a159 corresponds to a shortest plan wrt the goal & .

Theorem 2. Algorithm 1 is correct and complete.

5 An Implementation using BDDs — First Results

The theoretical results presented in the previous two sections can be applied
to use a BDD implementation as the inference engine for solving entailment
problems in FC and computing plans. The implementation closely follows the
structure of the constructions used in the proofs. Starting from a fluent calcu-
lus specification of the entailment problem, the inference engine constructs for



Problem GRIPPER—10|BLOCKSWORLD—8|GET—PAID—4
lexicographical 217409 206995 25633
sort ordered 3087 23373 38367

Table 2. The size of the BDD for B(T(z,2')) with an ordering of the variables by
name (lexicographical) or with a sort ordering heuristic, where fluents, which directly
influence each other, are grouped together.

each action a the BDD-representations for B(Ty(,)(z,2')), computes their dis-
junction B(T(z,z')) by (6). The BDDs of the formulas B(Z;(z)) are computed
iteratively by the following equations, which follow directly from (15) and (16).
Thus, BDD representations of the sets Z; are computed iteratively until either
an i is reached such that Z; = Z;41 or Z;N{o | B(o) E B(®a(z0))} # 0.
Similarly, Algorithm 1 can be implemented using BDDs.

This approach is an implicit® breadth first search. In each single step the
whole breadth of the search tree in depth i is searched. The sets Z; can get
quite complex and their BDDs quite large. Even more so, the size of the BDD for
B(T(z,2")), can quickly become too large to be handled in a graceful manner.
Thus, a number of techniques were invented to limit a potential explosion in its
size. In the sequel some of these techniques and their effects are sketched using
examples from [12].

Variable Order It is well known that the variable order used in a BDD has a
large influence on the size of the BDD. Unfortunately it is still a difficult problem
to find even an near optimal variable order.® Often, a good and acceptable vari-
able order is found by empiric knowledge and experimentation. In experiments
it has turned out that fluents, which directly influence each other, should be
grouped together.® As shown in Table 2 such a heuristic may lead to dramatic
improvements in the size of the BDDs if compared to a simple lexicographical
ordering, but this depends on the domain of the problem (of course).

Partitioning of the Transition Relation The maximal size of a BDD is exponen-
tial in the number of propositional variables it contains. Thus, the BDD repre-
senting B(T(z,z')), which contains twice as many propositional variables as the
BDDs representing the Z; , is prone to get very large. A way to reduce this prob-
lem is to divide the disjunction T(z,2") into several parts T1(z,2'),...,Tn(z,2'),
which correspond to subsets of the state update actions. In experiments, parti-
tioning led to a reduction in the size of the BDDs in most of the tested problems.

4 It is called implicit because the calculated sets of states are never explicitly enu-
merated, but represented as a whole by a BDD, whose size depends more on the
structure of the set, than on its actual size.

5 The problem to find the optimal variable order is NP-complete.

% Due to lack of space a precise definition of this heuristic can not be given here.
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Fig. 1. Runtimes of different planners on GRIPPER class problems (in milliseconds) with
different numbers of balls. Planners marked with opt provided optimal (i.e., shortest)
plans, planners marked with -adl work on the sorted version of the domains, the others
on the STRIPS-version.

On the other hand, such a decrease in the size of the BDDs does not necessar-
ily lead to a decrease in computation time. The various parts of the partitioned
transition relation have to be put together, and this takes time. Nevertheless,
partitioning may be useful even if the computation time increases. In the exper-
iments, one problem (MPRIME-X-1) could only be solved after a partitioning of
the transition relation; otherwise, the memory exceeded before a solution was
found.

Frontier Simplification explores the fact, that the algorithm for solving the en-
tailment problem in the fluent calculus works also if the following two conditions
are enforced for all 7+ > 0: (i) Z; represents all states which may be reached by
executing i actions, but not by executing less than i actions. (ii) Z; does not
represent any states which cannot be reached by executing at most ¢ actions.
The sets Z; can be chosen freely within these limitations. Hence, it is desir-
able that the algorithm chooses the Z; such that their BDD representations
are as small as possible. Frontier simplification promises to lead to moderate
improvements but no experimental data have been obtained yet.

To the end of this section the experimental results on the GRIPPER class are
discussed. These problems were quite hard for the systems taking part in the
ATPS98 competition. The difficulty is rooted in the combinatorial explosion of
alternatives due to the existence of two grippers. In Fig. 1 the runtimes of these
planners” are compared to our system, BDDPLAN.® Only one planner (HSP) was
able to solve all of the problems of this class, but it generated only suboptimal
plans by using only one of the two grippers, whereas BDDPLAN generates the
shortest possible plan by design.

" See http://ftp.cs.yale.edu/pub/mcdermott/aipscomp-results.html.
& The runtime of BDDPLAN is measured on a different machine, so it is only accurate
up to a constant factor.



6 Discussion

We have formally specified a mapping from entailment problems in a restricted
fluent calculus to satisfiability problems in propositional logic, which is sound and
complete, and we have reported some first experimental results of an implemen-
tation using BDDs. We are still in the process of investigating how optimization
techniques well-known in the area of model checking using BDDs can be tailored
such that they increase the efficiency of the implementation. The first results are
quite promising.

The mapping is tailored to a specific class of fluent calculus formulas. It seems
likely that there is a more general way to translate the formulas of a larger
fragment of the fluent calculus while keeping the restriction to propositional
fluents, such that we could introduce recent work on the fluent calculus like
ramification [17, 18] into the planner without modifying the translation and the
proofs. The concept of ramification within the fluent calculus involves a limited
use of constructs of second order logic, namely a calculation of the transitive
closure of a relation over states, but this does not seem to pose a difficult problem
as the set of states is finite and there are algorithms to compute this transitive
closure using BDDs [6].

Although the problems considered in this paper admitted only a single initial
state (i.e, Zp is unitary), the algorithm itself is by no means restricted to this
case. If the initial situation is incompletely specified then there are several initial
states, which leads to a set 2 containing more than one element.

We are aware of only another approach to reasoning about situations, actions
and causality using BDDs, viz. the system presented in [4, 5]. This system gener-
ates so—called universal plans, which consist of a state—action table that contains
for each state the action, which when executed leads to the goal in the short-
est way. This has the advantage that it works for non—deterministic problems
as well. We conjecture, that this approach is limited to less complex reasoning
problems, because the executed actions have to be encoded into the transition
relation. This leads to a considerable increase in the number of propositional
variables and, consequently, in the maximal size of the BDDs. But we have not
yet performed direct comparisons to bolster this conjecture.
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