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Abstract

The paper is an exercise in formal program develop-
ment. It is rigorously shown how planning problems
encoded as entailment problems in the fluent calculus
can be mapped onto satisfiability problems for propo-
sitional formulas, which in turn can be mapped to the
problem to find models using binary decision diagrams.
Preliminary experimental results of an implementation
are discussed.
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Introduction

In recent years propositional methods have seen a sur-
prising revival in the field of Intellectics, i.e., Artificial
Intelligence and Cognitive Science. Greedy satisfiability
testing and its variants (Selman, Levesque, & Mitchell
1992) and the various procedures for answer set com-
puting (e.g. (Niemelé & Simons 1997)) are just two ex-
amples. Another propositional method, model check-
ing using binary decision diagrams (BDDs), has found
widespread use in applications of computer aided design
such as formal verification and logic synthesis (Bryant
1986). In many cases techniques based on BDDs have
significantly improved the performance of algorithms
and enabled the solution of new classes of problems
(see e.g. (Burch et al. 1992; 1994)). But only re-
cently researchers have started to investigate whether
BDDs may also help to increase the efficiency of al-
gorithms solving typical problems in Intellectics like,
for example, planning problems (Cimatti et al. 1997;
Cimatti, Roveri, & Traverso 1998). In this paper we
report on some preliminary results in an attempt to uti-
lize BDDs for reasoning about situations, actions and
causality.

Without any doubt intelligent agents must be able to
reason about the current state of the world, their ability
to perform actions and the causes of performing certain
actions. In particular, they must be able to plan their
actions ahead in order to achieve their goals. There are
a variety of approaches to planning starting with (Green
1969) up to (Blum & Furst 1997). In the preparation for
a planning contest held at AIPS98, the language PDDL

(Planning Domain Definition Language) for expressing
planning problems was proposed (Ghallab et al. 1998).
While this language allows for a convenient specifica-
tion of planning problems, we are unaware of a formal
semantics. In a separate paper, a formal transformation
from the :adl fragment of PDDL into the fluent calcu-
lus is specified (Storr in preparation). The fluent calcu-
lus itself is a formal calculus for reasoning about situa-
tions, actions and causality which admits a well-defined
(standard) semantics (Holldobler & Schneeberger 1990;
Thielscher 1998a).

In this paper we consider a restricted fragment of
the fluent calculus, which allows for the specification of
planning problems as entailment problems in the spirit
of (McCarthy 1963). We formally define a transforma-
tion mapping these planning problems onto satisfiabil-
ity problems in propositional logic and, thus, we prove
the decidability of the abovementioned fragment of the
fluent calculus. Thereafter, we describe how the short-
est plan solving the planning problem can be extracted
from the propositional encoding. We briefly present
some preliminary findings of an implementation using
BDDs and conclude by discussing our results.

Foundations
Logics

Let Yy, Yr and Xp denote disjunct sets of wvari-
ables, function symbols and predicate symbols respec-
tively. Xy is countably infinite, whereas X and Xp
are finite. The set of (first order) formulas is denoted
by L(EZyUXpUXp); we abbreviate this set by £ if the
sets Yy, X and Xp can be determined from the con-
text. o denotes a substitution and Xo the instance
of the syntactic object X under o .

Table 1 depicts some notational conventions in the
sense that, for example, whenever we use F', we im-
plicitly assume F € L. Xpy, Yv.st, BV,Fl, 2V,Sit
and constructor state terms are defined later. All sym-
bols are possibly indexed. Free variables occurring in
formulas are assumed to be universally quantified.

The entailment problem F |= F consists of a set
F of formulas and a formula F and is the question
whether F entails F'.



Symbol f FG,... F 4,j,... =z
Element of %p; L 2 1INy Yv.se
Symbol g s t

Element of Yy r Xv,sit constructor state terms

Table 1: Notational conventions.

Planning

In this paper we consider planning problems having the
following properties:

e The set of states is characterized by a finite set of
propositional fluents, i.e., a set of propositional vari-
ables, which can take values out of {T,L1}.

e The actions are deterministic and their preconditions
as well as effects depend only on the state they are
executed in.

e The goal of the planning problem is a property which
depends solely on the reached state.

This class of problems corresponds to the problems
from track 1 and 2 of the planning competition held
at ATPS98. There, planning problems were formulated
within a language called PDDL (Ghallab et al. 1998).
As mentioned in the introduction, we have defined a
translation from PDDL into the fluent calculus else-
where. For the purpose of this paper we simply assume
a fluent calculus specification of the planning problems.

The Fluent Calculus

The fluent calculus is a calculus for reasoning about sit-
uations, actions and causality. It is based on the idea to
consider states as multi—sets of fluents and to represent
such states on the term level. The latter is done with
the help of a binary function symbol o, which is asso-
ciative, commutative and has a constant () as unit ele-
ment but is not idempotent (Holldobler & Schneeberger
1990; Thielscher 1998a). We consider a restricted ver-
sion of the fluent calculus specified in the sequel.

Formally, the fluent calculus is an order—sorted cal-
culus with sorts ACTION, SIT, FLUENT, and STATE
and ordering constraint FLUENT < STATE. The set
Yy of variables is the union of the disjunct sets Xy, 4,
Yv,sit, v, and Yy s, i.e., it consists of a countable
set of variables for each sort. The set Y of function
symbols is the union ¥4 U Xg; U Xy U Xg¢, where
Y 4 is a set of function symbols denoting action names,
Ysit = {So, do} is the set of function symbols denoting
situations, Y p; is a set of constant symbols denoting
fluent names, Yg; = {0, o, state} is the set of function
symbols denoting states. All sets are mutually disjoint
and finite. The mentioned function symbols are sorted
as follows:

So : SIT,

do : ACTION X SIT — SIT,

0 . STATE,

o : STATE X STATE — STATE,

state : SIT — STATE.

The set Y p of predicate symbols consists only of the
equality symbol with sort =: STATE X STATE . We will
often make use of a macro holds of sort FLUENT X SIT
defined as

holds(f,s) e (32) state(s) = foz
and a macro set of sort STATE defined as
set(z) def —(3f,2) z2=fofoZ% .

The language Lpc of the fluent calculus is the set
of all well-formed and well-sorted first—order formulas
over the given alphabet. State terms of the form ) o
fio...ofm, where fi,..., f;, € FLUENT are pairwise
distinct, m > 0, are called constructor state terms.

The axioms F of the fluent calculus considered in
this paper are the union FynUFmset UF s, UFmsUF sy, -

o Fun is a set of unique name assumption for fluents
combined with a domain closure axiom for fluents:

Fun =A-fr = fo| f1, fo € Zpr and f1 # fo}
Ui\ a=1} .

fEXR

e Fouset is aset of axioms ensuring that the sort STATE
denotes multisets of fluents.! It consists of the follow-
ing formulae:

— the standard axioms of equality
— the axioms AC1 for o and 0:

zol) =z
Z1 0Z2 = Z2021
(21 022) 023 = 21 0 (29 0 23)

— an axiom that guarantees that fluents and () are
the only irreducible elements of o :2
[(Qg)z=9gVz=0«
(VZI,Z”) 2=20z" 5 =0V 2" :@]

— a property known as Levi’s lemma from monoid
theory:

21 029 = 23024 —
21 = 2402y N\ 25 = 2Z:02g N\

24, 21, 2, 2
(32a, 26, 2e, 2a) 23 =72302: N 24 = 2 0 24

— an induction axiom:

(VP) [P(0) A (Yg,2) [P(2) = P(goz)]
— (Vz) P(2)] .

!More specifically, these axioms ensure that in every

model M we have that STATE™ with operations @™

and o™ is isomorphic to the set of finite multisets over

FLUENT™ with operations § and U denoting the empty

multiset and multiset union (Stérr & Thielscher 2000).
Please note that (3g) z = g is true iff z is contained

in the sort FLUENT , which is a subsort of the sort STATE .



e Fg, contains a single axiom ®j(state(sg)) of the
form state(sg) =t describing the initial state, where
t is a constructor state term.

e F..s contains an axiom specifying that in each state
each fluent may occur at most once:

Fms = {(Vs, z) =(3g) state(s) =gogoz}

o T, is the set of state update axioms of the form

Ay(s) A /\ holds(g,s) A /\ —holds(g, s)

gEY™ geEYT
— state(do(a, s)) o9~ = state(s) o9, (1)

where 9~ and 9T are constructor state terms de-
noting the negative and positive direct effects of an
action a under condition A,(s) € Lrc respectively.
Ay(s) is a Boolean combination of formulas of the
form holds(f,s) . In the following we will denote the
antecedent of (1) with A(s).

To exemplify the axiomatization con-
sider a simple safe with two levers, the left '
of which has to be up and the right of which D
has to be down in order to open the safe.

Such a safe can be modeled with the help of the flu-
ents [ and r representing the fact that the left and the
right lever are up respectively, and the fluent o repre-
senting the fact that the door is open. There are three
actions: tl and tr toggle the left and right lever re-
spectively, and op opens the safe iff the left lever is
up and the right one is down. Initially, the left and the
right lever are down. Is there a sequence of actions such
that the safe is open after its execution? To model this
scenario the axioms are instantiated as follows:

Fs, = {state(so) = 0},

_[l#r l#0,r#o0,
f"”_{ (Vg) [gzl\/gzr\/ng)]} ’

su —

( holds(l,s) — state(do(tl,s)) ol = state(s), )
=holds(l,s) — state(do(tl,s)) = state(s)ol,
holds(r,s) — state(do(tr,s)) or = state(s),
=holds(r,s) — state(do(tr,s)) = state(s)or,
holds(l,s) A —holds(r,s) A —holds(o,s) —

L state(do(tr, s)) = state(s) oo )

Fmset and Fyp, remain unchanged. The planning
problem itself is represented by the entailment problem

F | (3s) holds(o, s), (2)
which is equivalent to
F | (32) (3s) z = state(s) A (F2) z =002 .

The binding for s generated in a proof of (2) encodes
the sequence of actions solving the planning problem.

In this paper we consider entailment problems rep-
resenting propositional planning problems, i.e., entail-
ment problems of the form

F = (32) [(3s) z = state(s) A Pa(2)], (3)

where ®5(z) is a Boolean combination of terms of the
form (3z') : z = 2’ o f for some fluent f. In other
words, we are asking if there is a situation, in which
some Boolean combination of fluents holds. One should
observe that ®z(z) is independent of Fg, U Fg, be-
cause it does not contain an expression of sort SIT.

In this paper we consider a fluent calculus FC, which
is restricted wrt. the general calculus as follows:

e we allow only (finitely many) constants as fluents,
e states are effectively sets of fluents due to Fp,s ,
e the initial state is completely specified,

e the state update axioms specify only deterministic
actions without ramifications or other constraints.

The first and the second restriction imply that there
are only finitely many different states uniquely charac-
terized by the set of fluents, which hold in each state.
As we will show in this paper these four restrictions
are sufficient conditions to ensure that the entailment
problem is decidable.

For notational convenience we abbreviate a term
do(ap, do(...(do(a1,So)...)) to ay...a1Sy. Further-
more, feq = Fmset U Fms U Fun -

Binary Decision Diagrams

The idea of BDDs is similar to decision trees: a Boolean
function is represented as a rooted acyclic directed
graph. The difference to decision trees is that there
is a fixed order of the occurrences of variables in each
branch of the diagram, and that isomorphic substruc-
tures of the diagram are represented only once.® This
can lead to exponential savings in space in comparison
to representations like decision trees or disjunctive or
conjunctive normal form.

We will introduce BDDs via an ex-
ample. A formal treatment of BDDs
is out of the scope of this paper and
we refer the interested reader to the
literature (see e.g. (Bryant 1986)).
Consider the propositional logic for-
mula (aAb)V (cAd). Using the vari-
able ordering a < b < c¢ < d aBDD
representation of this formula is given
in the figure to the right.

For a given valuation of the propositional variables
a, b, ¢ and d the value of the Boolean function rep-
resented by the BDD is obtained by traversing the di-
agram starting from the root and taking at each node
the edge labeled with the value of the variable occur-
ring in the node. The label of the terminal node defines
the value of the function under the current valuation.
For example (a— L, b~ L, ¢~ T,d+— L) leads to
a node labeled L, i.e., the value of the formula is L
wrt. this valuation.

3Thus, the BDD is ordered and reduced, also called
ROBDD. These properties are so useful that they are re-
quired in almost all BDD applications, so many authors
include these properties into the definition of BDDs.




Bryant has shown in (Bryant 1986) that, given a fixed
variable order, every Boolean function is represented by
exactly one BDD. Moreover, propositional satisfiability,
validity and equivalence problems are decidable over
BDDs in linear or constant time. Of course, the com-
plexity of the mentioned problems does not go away:
the effort has been moved to the construction of the
BDDs. But as Bryant has shown as well, there are ef-
ficient algorithms for logical operations, substitutions,
restrictions etc. on BDDs, whose cost is in most cases
proportional to the size of its operands. BDDs may be
used as a theorem prover, i.e., by construction of a BDD
corresponding to a logical formula, and check the BDD
for interesting properties, but more often they are used
as an implementation tool for algorithms which are se-
mantically based on Boolean functions or, equivalently,
propositional formulas, or, via the characteristic func-
tions, sets. In the implementation these formulas or
sets are always represented as BDDs. The use of BDDs
in this paper follows this spirit.

Mapping FC onto Propositional Logic

The envisioned implementation will recursively gener-
ate sets of states which are reachable from an initial
state by applying actions until one of these states sat-
isfies the goal condition. This two—step behavior is al-
ready reflected in (3): The first conjunct expresses the
fact that we are looking for a state z such that z is ob-
tained from state(Sy) by applying state update axioms,
whereas the second conjunct expresses the fact that in
z certain fluents should or should not hold. We start
with the first step and are aiming at finding a proposi-
tional logic characterization of F |= (3s) z = state(s) .
We will define a relation T'(z,z') which holds iff the
state z’ is a successor state of z wrt the state update
axioms.* Moreover, this transformation will enable us
to encode the reasoning process into propositional logic.

Note that after expanding the macro holds the pre-
condition A(s) of each state update axiom

A(s) — state(do(a, s)) o9~ = state(s) o ¥+ (4)

in Fy, effectively depends on state(s), and this term
contains the only occurrences of terms of sort SIT oc-
curring in the precondition of (4). To explicitly ex-
press this dependence we will write A(state(s)) instead
of A(s). Making use of this notation the expression
A(z) denotes the formula A, where each occurrence
of state(s) has been replaced by z.

For each state update axiom ¢(a) of the form (4) we
define

Tya)(2,2") =[A(z) A2 0™ =20 Vanh (5)
and for the set Fj, of state update axioms we define
T(Zazl) = \/ T¢(a)(zvz’)' (6)
o(a)EFsu
This definition is motivated by the following result:

4This corresponds to the transition relation in finite state
systems.

Lemma 1 Let t and t' be two constructor state terms
and F k= state(s) = t. F |= state(do(a,s)) =t iff
Feq E Tya)(t,1') for some ¢(a) € Fy -

Sketch of Proof For two constructor state terms
t and ¢ with F |= state(s) =t we have that F =
state(do(a,s)) = t' iff there is a state update axiom
¢(a) which gives a reason for this. The latter fact is
equivalent to Fey = Ty(a)(t,1') . 0

A binding of the form z/t, where t is a constructor
state term is called constructor state binding. A substi-
tution consisting only of constructor state bindings is
called constructor state substitution. In the sequel, o
will always denote a constructor state substitution.

Our task is to encode entailment problems in FC
into satisfiability problems in propositional logic. On
the first glance this seems to be impossible, because
there are infinitely many terms of the sorts SIT and
FLUENT , whereas the set of valuations of a finite propo-
sitional program is finite. Fortunately, however, we are
primarily interested in logic consequences of the form
(3s) state(s) = z in which the only free variable z is of
type STATE. From axiom F,,; we know that the val-
ues for z may contain each fluent at most once. Since
there are only finitely many fluents, the set of possible
bindings for z is also finite.

More precisely, we want, to show that whenever o is
an answer substitution for the entailment problem

F E ((3s) [z = state(s) A ®g(z)]) o,

then there exists a propositional valuation Bg(o) which
is a model for an appropriately generated propositional
logic formula B((3s) [z = state(s) A®g(2)]) . The map-
ping B depends on state terms, ®;(z), T(z,2') and
®;(z) and is recursively defined in the sequel.

The basic idea underlying Bg is as follows. Sup-
pose Yp; = {f1,...,fm}. Each variable z occurring
in a constructor state binding z/t € o is represented
by m propositional variables zy, ,...,zg,. such that
Bs(o)(zg) =T iff f; occursin t. The precise defini-
tion of Bg is motivated by lemma 2.

We turn now to the formal definitions:

Ground constructor substitutions Let z/t be a
constructor state binding and o a constructor state
substitution. Then Bg(z/t) is the valuation defined by

Bs(z/t)(zy) = T iff f occurs in ¢,
for all f € ¥p;, and

Bs(o) = U Bs(z/t).

z/teo

5The proof is omitted for space reasons. The full proof
can be found in (Hoélldobler & Storr 1999).



State terms Let @ denote the exclusive or. For each
f € Xp; we define By :

B (0) = 1

B (f") = Tiff f=f
B¢(2) = zf

By(tiota) = By(t1) ® By(t2)

Goal formulas Recall that each goal formula ®4(2)
is a Boolean combination of formulas of the form
(32") 2/ = zo f. Each Boolean operation can be rep-
resented by means of the operators A and —. Thus,
we define

Bo((@) z=20f) = 2,
Ba(=F) = -Bg(F),
BG(F/\G) = BG(F) /\BG(G).

F formulas In the proof of the main Theorem 3 we
need to apply B to formulas of a certain form involving
T(z,z'). Let F be the set of formulas defined by

ff%fz? g,F and T'(z,2') as defined in (5) and (6),
then (3z) [set(z) A F(z) ANT(z,2)] € F.
For this class of formulas we define
Br(z=1) = Njer,, (27 € Bs(1))
Br((3z) [set(z) A F(z) AT(z,2")]) =
(3(zp)rezm) [Br(F(2)) ABr(T(z,2))],
where

BrTe,) = Vawer, Br(Ta (),
Br(Tp(a)(z,2")) Br(A(z) Az o™ =zo0dT)
Ba(A(2)) A Njpesy,

(B (' o 97) 4 Bylz 00

(3zp)resy)F = (3zp)-.-Fzp,)F,
(SZf)F = Flzp/T|V Flzp/ 1],
Fl = Iy---sJmJ>

F' denotes a propositional logic formula, F[z;/T] and
Flzp/1] denote the formulas obtained from F by re-
placing all occurrences of zy in F' by T and L re-
spectively.

Initial state Recall that the initial state is charac-
terized by a formula state(sg) =t¢.
A

N zn
f occurs in t f does not occur in ¢

Bi(state(sp) =t) =

In the sequel we will omit the index associated with
B if it can be determined from the context to which
class of syntactic objects B is applied.

Lemma 2 Let F be either ®;(z), ®g(z) or an F
formula and o a constructor state substitution such
that Fo does not contain any free variables. Then,

Fu E Fo iff B(o) = B(F).

The proof is done by induction over the structure of
F . Tt is omitted for space reasons; the full proof is
presented in (Holldobler & Stérr 1999).

Lemma 2 provides a technique for transforming a re-
stricted subset of fluent calculus formulas (which in-
cludes T'(z,2')) into satisfiability—equivalent proposi-
tional formulas. This is the base to transform planning
problem specified in FC into propositional logic. The
steps of this transformation are described in the proof
of the following main theorem.

Theorem 3 The entailment problem in FC can be

mapped onto the satisfiability problem in propositional

logic.

Proof Consider the entailment problem in the FC:
F | (3s,2) [z = state(s) A Pg(2)].

Because of F,,s this holds iff there is a constructor
state substitution ¢ such that

F = (3s) [zo = state(s) A ®a(z0)],
or, equivalently:
{o | F |= (3s) [z0 = state(s) AN ®g(z0)]} #0. (7)

Because conjunction can be mapped onto set intersec-
tion and ®g(zo) does not depend on Fy, and Fg,
(7) is equivalent to

{o | F E (3s) zo0 = state(s)} NG # 0, (8)

where G = {0 | Feq E ®a(20)}. Let m be the number
of fluent constants. Because of axiom F,,s we have at
most 2™ different states and because preconditions and
effects of actions depend only on the current state, the
length of the shortest plan can be at most 2™ (such
that every state is visited once). Thus (8) is equivalent
to

om

{717V Baicicn) 20 = state(an...a15) }

n=0
nNg#0, (9

where (a;)1<i<n denotes a sequence of actions of length
n . Because disjunction can be mapped onto set union
(9) is equivalent to

gm
U 2.nG #0, (10)
n=0
where
Z, =
{o | F E (F(ai)i<i<n) 20 = state(arn ...a150)}. (11)
Because state(Sp) depends only on Fg, =

{®s(state(sp))} and by Lemma 1 equation (11)
can be computed recursively by

Zy = {o|Feq = 21(z0)}, (12)
{0 | Feq ET(26,20),6 € Z,}. (13)

Zn+1



With
Zo(z) = 91(2), (14)
Zpii(z) = (32) [set(2) AN Zn(2) AN T(2,2)],(15)
(12) and (13) can be equivalently combined to
Zp={0| Feqg EZn(z0)},n > 0. (16)

From Lemma 2 we conclude that (16) is equivalent to
2, = {o| Blo) F B(Za(z)},n 0. (17)

Finally, an application of Lemma 2 to G guarantees
that (10) is equivalent to

U 2an{o | B(o) E B(®a(2))} # 0,

where Z,, is specified in (17). This, however, is equiv-
alent to

{0180 £ (i; B(Z.)) A B@a()} #0 . (18)
n=0

where Z, is specified in (14) and (15). i

The following corollary is an immediate consequence
of Theorem 3 and the decidability of propositional logic.

Corollary 4 The entailment problem in FC is decid-
able.

Plan Extraction

In practical applications of planning it is not only rele-
vant whether a plan solving the problem exists, but in
most cases one would like to know how such a plan looks
like. As it turns out, it is possible to extend the decision
procedure presented in the previous section such that a
plan can be recovered. In fact, the extended algorithm
returns always the shortest plan.

The main idea for extracting the plan is the follow-
ing: In the decision procedure presented in the previous
section we calculate the sets Z; which characterize the
states reachable from the initial state after i actions.
Thus, if

Zin{o | B(o) = B(®a(2))} # 0,

i.e., if the Z; contains a goal state, then there must be
a plan of length 7. We can now reconstruct such a plan
step by step by taking a substitution ¢ (characteriz-
ing a state zo ) from the intersection, computing the
intersection of the set of states from which this state
may be reached and Z;_; , and repeating this process
until eventually initial state is encountered. Thus, we
find a sequence oy, ...,0, of substitutions representing
the states zoy,...,z0,, where the first one is the ini-
tial state specified by Fg, , the last one fulfills the goal
®;(z0,) and zoi41, 0 < i < n, is reachable from
the previous state z; by executing an action. The fi-
nal step is to find actions which transform each zo; to
zo;+1 by finding a state update axiom ¢(a) such that
Fun U Fmset ': T¢(a) (Zgia Zo'i—i-l) .

Algorithm 5 Let Z;, 0 < i < 2™, be the sets com-
puted by equation (17) such that (18) is fulfilled. Take
the smallest n such that

ZnN{o | Blo) = B(®a(2))} # 0 (19)

and compute a sequence oy, . ..,0, of substitutions and
a sequence ai,...,a, of actions such that

on € ZnN{o|B(o) | B(®a(2))}
oi-1 € Zi1N{o|B(o) E B(T(z,20:))}
a; such that B(Ty(a,)(20i-1,20:)) =T

Theorem 6 Algorithm 5 is correct and complete.

Sketch of Proof We have to prove that the algorithm
returns a result if there is a plan and that the result is
indeed a plan of shortest length. The proof is by induc-
tion on the steps of the algorithm. That it is indeed the
shortest plan is guaranteed by the fact that Algorithm 5
selects the smallest n satisfying equation (19).° i

An Implementation using BDDs —
Preliminary Results

Given the theoretical results presented in the previous
two sections, we can now use BDDs as the actual infer-
ence engine for the planning process. The implementa-
tion closely follows the structure of the constructions in
the proofs. Starting from a fluent calculus description
of the planning problem or, likewise, from a PDDL-
description, the inference engine constructs for each
action a the BDD-representation for B(Ty,(2,2"))
and computes their disjunction B(T(z,z')) . The BDDs
of the formulas B(Z;(z)) are computed iteratively by
the following equations, which follow directly from (14)
and (15):

B(Zo(2)) = B(®1(2))
B(Zn11(2)) B((32) [set(2) A Zn(2) A T(2,2)])

Finally, a satisfiability test corresponding to (18) de-
cides whether the planning problem has a solution.
Similarly, algorithm 5 can be implemented using BDDs.

There are a number of possible optimizations for
this algorithm and we have just started to experiment
with these: First, it suffices to compute B(Z;(z)) un-
til it becomes stationary, oscillates or until B(Z;(z)) A
B(®s(z0)) = T . Second, a variety of techniques devel-
oped for similar algorithms may be applied. We devel-
oped a domain independent variable ordering principle
called sort ordering, which, depending on the problem,
resulted in improvements of sometimes two orders of
magnitude in computation speed. Partitioning of the
transition relation B(T'(2,z)) did not change calcula-
tion times much, but resulted in sometimes quite large
reductions of memory usage on some problems (up to
64 fold). Frontier simplification (Clarke, Grunberg, &
Long 1994; Burch et al. 1992) has resulted in moderate

6The full proof can be found in (Hélldobler & Stérr 1999).



improvements in terms of calculation time. Other tech-
niques such as ignoring fluents and actions which seem
irrelevant will be tested in the near future.

The implementation was tested using the problems
of the planning contest at AIPS98 and we have re-
ceived mixed results so far. In the problem class called
Gripper our planner performed extremely well: it was
able to solve even the most difficult problems, whereas
the planners which have participated in the competi-
tion were only able to solve but the simplest problems.
In other problem classes, however, our implementation
did not outperform existing planning algorithms yet.
Nevertheless, having just started to investigate opti-
mization techniques it is too early to relate our BDD
implementation of planning to existing planners.

A more detailed discussion of our findings can be
found in a companion paper (Holldobler & Stérr 2000).

Discussion

In this paper we have formally specified a mapping from
entailment problems in the fluent calculus FC to satis-
fiability problems in propositional logic, and we have
reported on preliminary findings of an implementation
using BDDs. At present, our algorithm is closely re-
lated to model checking algorithms (Burch et al. 1992)
which perform symbolic breadth first search in the state
space. It generates a series (Z;);—o,... of propositional
formulas represented as BDDs, which encode the set
of states reachable after the execution of i actions (or
a suitable subset which contains all states which don’t
occur at lower levels of the search tree), until there is a
goal state among the states encoded. But we anticipate
deviations from that pattern by imposing restrictions
on fluents and actions taken into account (similar to
abstraction in planning, e.g. (Knoblock 1994)).

The algorithm is similar to Graphplan (Blum & Furst
1997) in that it builds up a data structure for each level,
which describes the states reachable after the execution
of n actions. Unlike Graphplan, that gives only an up-
per bound of the the set of states reachable by its mutex
mechanism, our algorithm computes an exact symbolic
representation of this set. Consequently, the plan ex-
traction process is deterministic and no backtracking is
needed.

Our approach always generates shortest plans, and is
able to prove that there is no plan if there isn’t one.
In contrast to algorithms based on planning as satis-
fiability (Kautz & Selman 1996) and Graphplan the
algorithm presented here is not limited to the gener-
ation of polynomial length plans. On the other hand,
each step of the algorithm may take exponential space,
because the maximum size of BDDs is O(2") for n
propositional variables. However, the experimental re-
sults achieved so far indicate that in practice the BDDs
are much smaller than the theoretical limit.

Still, the size of the encountered BDDs is the main
problem limiting the scalability of the algorithm and is
an topic of further research. Since the maximum size
of BDDs is exponential in the number of propositional

variables, the reduction of this number is a foremost
concern. In contrast to SATPLAN-like approaches, it
is not necessary to unfold the time steps of the plan,
since all time steps are treated separately. Moreover we
are able to omit the variables encoding actions easily,
since we are not restricted to a clausal form of the for-
mulas we are working with, and the actions can be re-
constructed from the sequence of states. The encoding
we use at present is “naive” in the sense that each flu-
ent corresponds to a single propositional variable. We
assume that the use of domain dependent properties
of fluents provides a large space for improvements, as
discussed in (Edelkamp & Helmert 1999) for the BDD
based planning system Mips, which is used to explore
automated generation of efficient state encodings for
STRIPS/ADL/PDDL planning problems and the im-
plementation of heuristic search algorithms with BDDs.

Depending on the task, it seems to be inevitable
to encode the actions in the case of nondeterminis-
tic domains, as in the work of (Cimatti, Roveri, &
Traverso 1998). Their system generates so—called uni-
versal plans, which consist of a state—action table that
contains for each state the action, which leads to the
goal in the shortest way. This approach opens new pos-
sibilities in generation of plans for non—deterministic
domains. However, considering the case of determinis-
tic domains, we conjecture, that this approach is limited
to less complex reasoning problems in comparison to
state—only encodings, because, additional to the states
before and after the execution, the executed actions
have to be encoded into the transition relation as well.
This leads to a considerable increase in the number of
propositional variables and, consequently, in the maxi-
mal size of the BDDs. But we have not yet performed
direct comparisons to bolster this conjecture.

Our translation is tailored to a specific class of fluent
calculus formulas, which is just large enough to spec-
ify the considered class of planning problems. How-
ever, it seems likely that there is a more general way to
translate the formulas of a larger fragment of the fluent
calculus while keeping the restriction to propositional
fluents, such that we could introduce recent work on
the fluent calculus like ramification (Thielscher 1998a;
1998b) into our planner without modifying the transla-
tion and the proofs. The concept of ramification within
the fluent calculus involves a limited use of constructs
of second order logic, namely a calculation of the tran-
sitive closure of a relation over states, but this does not
seem to pose a difficult problem as the set of states is
finite and there are algorithms to compute this tran-
sitive closure using BDDs (Clarke, Grunberg, & Long
1994).

A recent result on a decidable fragment of a (second—
order) situation calculus (Ternovskaia 1999) also in-
dicates that limited forms of second-order formulas
do not lead to undecidablity of the entailment prob-
lem, which is an obvious precondition for envisioning
a BDD-based implementation of an algorithm solving
these problems. On the other hand, as soon as a fi-



nite set of unary function symbols or two binary func-
tion symbols are used in defining fluents, then the en-
tailment problem in the fluent and the situation calcu-
lus becomes undecidable (Holldobler 1999), and hence
these extended fragments can no longer mapped onto
propositional satisfiability problems.
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