
BDD�based Reasoning in the Fluent Calculus
� First Results

�Extended Abstract�

Ste�en H�olldobler and Hans�Peter St�orr

Arti�cial Intelligence Institute

Department of Computer Science

Dresden University of Technology

fsh�hans�peterg�inf�tu�dresden�de

Abstract

The paper reports on �rst preliminary results and insights gained in a
project aiming at implementing the �uent calculus using methods and
techniques based on binary decision diagrams� After reporting on an
initial experiment showing promising results we discuss our �ndings
concerning various techniques and heuristics used to reduce the search
space�

� Introduction

In recent years we have seen highly advanced and novel implementations of
propositional calculi and systems like� for example� GSat and its variants
����� Smodels ���� or Dlv ���� to mention just a few� The implementations
were applied to many interesting �elds in Intellectics like� for example� plan	
ning or non
monotonic reasoning� On the other hand� very few results are
reported so far on applying another propositional method in these �elds� viz��
model checking using binary decision diagrams �BDDs�� with �
� �� being an
exception� This comes to a surprise because model checking using binary de	
cision diagrams has signi�cantly improved the performance of algorithms and
enabled the solution of new classes of problems in related areas like formal

� � GRIPPER PLANNING PROBLEMS

veri�cation and logic synthesis �see e�g� ��� ���� Can we adopt the technology
developed for model checking of �nite state machines using binary decision
diagrams for the solution of planning problems and� more generally� prob	
lems occurring in reasoning about situations� actions and causality� Can we
enrich these techniques by exploiting the experiences made in the state of
the art implementations of propositional logic calculi and systems mentioned
at the beginning of this paragraph�

In order to answer these and related questions a sound and complete
mapping from �a fragment of� the �uent calculus ��� ��� to propositional logic
is speci�ed in ���� such that the entailment problem in the �uent calculus
can be solved by �nding models for the corresponding propositional logic
formula� The propositional logic formulas are represented by reduced and
ordered binary decision diagrams and techniques from model checking are
applied to search for models�

Here we report on initial results� �ndings and insights gained with the
BDD
based implementation of the �uent calculus� After brie�y discussing
the �uent calculus and the implementation using an example from the so

calledGripper
class� we concentrate on two heuristics and techniques which
can be applied to speed up the solution of the planning problem� In partic	
ular� we discuss some results on variable ordering and partitioning of the
transition relation�

In this extended abstract we assume the reader to be familiar with the
�uent calculus and binary decision diagrams� and refer to ���� ��� and ��� as
references respectively�

� Gripper Planning Problems

In a contest held at AIPS��� planners had to solve various problems� among
which were the problems of the so
called Gripper class�

A robot equipped with two grippers G� and G� can move between
two rooms A and B � Initially the robot is in room A together
with a number of balls B�� � � � � Bn � The task is to transport
these balls into room B �

The problems di�er wrt the number of balls and are then called Gripper���
Gripper�� etc�

�

We will specify Gripper class problems in the �uent calculus in a mo	
ment� Before doing so� however� some notational conventions are helpful�
Words starting with an upper letter denote constants� whereas words start	
ing with a lower letter denote predicate symbols� non
nullary function sym	
bols and variables� Additionally we assume that each variable a denotes an
action� s a situation� f a �uent and z a state� The latter conventions are
encoded as sorts in the �uent calculus �see ���� ����� All symbols may be
indexed� We also make frequently use of the abbreviation

holds�f� s� � ��z� state�s� � f � z � ���

The initial state of a reasoning problem in the �uent calculus is speci�ed
by an axiom of the form

FS� � fstate�S�� � tg� ���

relating the initial situation S� to a state t � t itself is a so
called construc�
tor state term of the form ��f� � � � ��fn � n � � where the fi�s are pairwise
distinct� If an equation like ��� is given� then �I�z� denotes the equation
z � t � Turning to the example� the initial state of a Gripper class problem
is speci�ed by

FS� � fstate�S�� � at�B�� A� � � � � � at�Bn� A�
� free�G�� � free�G�� � at�robby�A� g�

where n is instantiated to some number� Informally� state is a function
mapping situations to states� The �uent at�b� r� states that ball b is at
room r � free�g� states that gripper g is free and at�robby�r� states that
the robot is at room r �

There are three actions in the Gripper class�

� the robot may move from one room to the other�

� the robot may pick up a ball if it is in the same room as the ball and
one of its grippers is empty�

� the robot may drop a ball if it is carrying one�

� � GRIPPER PLANNING PROBLEMS

These actions are speci�ed by means of state update axioms�

Fsu � f holds�at�robby�r��� s� � �holds�at�robby�r��� s�
� state�do�move�r�� r���� s� � at�robby�r�

� state�s� � at�robby�r�� �

holds�at�b� r�� s� � holds�at�robby�r�� s�
� holds�free�g�� s� � �holds�carry�b� g�� s�
� state�do�pick�b� r� g��� s� �at�b� r� � free�g�

� state�s� � carry�b� g� �

holds�carry�b� g�� s� � holds�at�robby�r�� s�
� �holds�at�b� r�� s� � �holds�free�g�� s�
� state�do�drop�b� r� g��� s� � carry�b� g�

� state�s� � at�b� r� � free�g� g

In addition� we need the axioms Fun specifying the unique name as	
sumption for �uents� Fmset specifying that all state
terms denote multisets
of �uents and Fms specifying that in each state each �uent may occur at
most once� Altogether� the axioms of the �uent calculus are

F � Fun 	 Fmset 	 FS� 	 Fms 	 Fsu�

Reasoning problems themselves are speci�ed as entailment problems in
the �uent calculus� For the Gripper class we obtain the entailment problem

F j� ��s� holds�at�B�� B�� s� � � � � � holds�at�Bn� B�� s��

Using abbreviation ��� this can be reformulated as

F j� ��s� ���z� state�s� � at�B�� B� � z� � � � � � ���z� state�s� � at�Bn� B� � z��

which itself is equivalent to

F j� ��z� ���s� state�s� � z� � ���z�� z � at�B�� B� � � � � � at�Bn� B� � z���

In general� reasoning in the �uent calculus amounts to solving an entailment
problem of the form

F j� ��z� ���s� state�s� � z� � �G�z��

where �G�z� is a goal formula with z as the only free variable� Such prob	
lems have a solution if we �nd a substitution � for z such that

F j� ���s� state�s� � z�� ���

and

F j� �G�z�� � ���

It is su�cient to restrict us to substitutions � which actually denote states
of our reasoning problem� i�e�� substitutions which contain solely bindings of
variables of type state to constructor state terms� Such substitutions are
called constructor state substitutions� In the sequel� � will always denote a
constructor state substitution�

The main idea of the algorithm presented in ���� is to calculate a sequence
�Si j i � �� of solutions to ��� which correspond to the sets of states reached
after executing �� �� �� � � � actions starting in the initial state� until a state
is found which is a goal state� i�e� ful�lls ���� or� if no new states are reached�
in which case there is no plan� The implementation of this algorithm is done
by representing these sets by binary decision diagrams �BDDs��

� The Algorithm

The algorithm for solving entailment problems in the �uent calculus follows
in spirit the algorithm to �nd reachable states presented in ���� As mentioned�
the aim is to �nd the sets Si of solutions for ��� representing states which
can be reached from the initial state after the execution of i actions� The
�rst crucial question to tackle is how to represent these sets using BDDs�

Each solution to ��� is a constructor state substitution fz�tg with a
term t of the form � � f� � � � � � fn � where the fi�s are pairwise distinct�
On �rst glance it seems impossible to represent substitutions by �nite BDDs
because there are in�nitely many terms� Fortunately� however� if there are
only �nitely many �uents then there are also only �nitely many terms t such
that fz�tg satis�es ��� due to Fms � Furthermore� because � is an AC�

symbol in the �uent calculus we do not have to distinguish between terms
which are equivalent under the AC� equational theory� In other words� a term
t occurring in the codomain of a constructor state substitution is uniquely
characterized by the set of �uents occurring in t �

� � THE ALGORITHM

This observation opens a possibility for encoding sets of solutions for
the entailment problem in the �uent calculus into a BDD� for each of the
�nitely many �uents f which may occur in the binding for a variable z in
a constructor state substitution we introduce a propositional variable zf � A
constructor state substitution � � fz�tg is represented by a valuation B���
for these variables such that zf is mapped to
 by B��� i� f occurs in t �
� Hence� a set S of constructor state substitutions is represented by a set
of valuations� The set of valuations itself is represented by a propositional
formula Z such that the set of models for Z is the set of valuations� Finally�
Z is represented by a BDD� For example� if the alphabet underlying the
�uent calculus contains precisely the �uent symbols a� b and c � then the
set ffz�a � bg� fz�c � bgg is represented by the formula �za � zb � �zc� �
��za � zb � zc� �

The crucial point of our application of methods and techniques based on
BDDs to reasoning in the �uent calculus is the following� We could identify
a class C of formulas over the alphabet underlying the �uent calculus and
a transformation B mapping each F � C to a propositional logic formula
B�F � such that �i� the class is expressive enough to represent interesting
entailment problems wrt the �uent calculus and �ii� the following result holds�

Lemma �� Let F � C 	 f�I�z�� �G�z�g and � a constructor state substi�
tution such that F� does not contain any free variables� Then�

Fun 	 Fmset j� F� i� B��� j� B�F ��

The precise de�nition of C and B as well as the proof of this lemma is
beyond the scope of this extended abstract and we refer the interested reader
to ���� for all the details�

We turn now to the process of calculating the sequence �Si j i � �� �
S� can be immediately derived from �I�z� � But how can we compute Si��

given Si and Fsu � In order to answer this question we de�ne

T��a��z� z
�� � ���z� � z� � �� � z � ��� � �
�

for each state update axiom ��a� � Fsu of the form

�
����state�s��� state�do�a� s� � �� � state�s� � ���

�A substitution containing more than one binding is represented similarly� for each

variable we introduce a separate set of propositional variables which encodes the binding

of that variable�

�

Furthermore� for the set Fsu we de�ne

T�z� z�� �
�

��a��Fsu

T��a��z� z
�� � ���

This de�nition is motivated by the following result� whose proof can again
be found in ����

Lemma �� Let t and t� be two constructor state terms and F j� state�s� �
t � Then�

F j� state�do�a� s�� � t� i� Fun 	 Fmset j� T��a��t� t
�� for some ��a� � Fsu�

Because T�z� z�� � C we can compute B�T�z� z��� and apply Lemma ��
Altogether we obtain a procedure for calculating the sequence �Si j i � ��
as follows� Let ff�� � � � � fng be the �nite set of �uents in the alphabet un	
derlying the �uent calculus� Furthermore� let F �z�� � � � � zn� denote a propo	
sitional logic formula F built over the propositional variables z�� � � � � zn �
The sequence �Zi j i � �� of propositional logic formulas corresponding to
�Si j i � �� is de�ned by

Z���z� � B��I�z�� ���

Zi����z
�� � ���z� Zi��z� � B�T�z� z�����z� �z ��� ���

where �z is the vector zf� � � � � � zfn of propositional variables used to encode
z and ���z� F is an abbreviation for ��z�� � � � ��zn� F with

��zi� F � Ffzi��g � Ffzi�
g �

From ��� and ��� the so called forward pass of our planning algorithm
for computing the sequence �Si j i � �� can be derived�

�� De�ne S� � i�e�� the BDD
representation of Z� � such that it contains
only the initial state of the reasoning problem�

�� Recursively calculate Si�� � i�e�� the BDD	representation of Zi�� based
on Zi and B�T�z� z��� � until either Si overlaps with the set G of
goal states� in which case the reasoning problem is successfully solved
or until a �xpoint is reached� in which case the reasoning problem is
unsolvable�

� � OPTIMIZATIONS

GGGG

S� S� S�

T T

Sk

� � �

T T

Figure �� An illustration of the forward pass of our algorithm� After three steps
the sets S� and G overlap�

The algorithm is illustrated in Fig� �� Starting from the initial state all
reachable states are generated� The algorithm terminates as soon as this set
of states overlaps with the set of goal states or can no longer be expanded�

If the forward pass terminates successfully� then in a second step a shortest
plan is constructed� This is done by choosing a state from G � Sk and
searching for a chain of states through which this state can be reached from
the initial state� This is done by iterating backwards through the sets Si

generated by the forward pass algorithm� Because this second step is a
computationally �relatively� inexpensive part� we refer the interested reader
to ����� where also the soundness and completeness of the combined algorithm
is established�

� Optimizations

The planning approach described above is an implicit� breadth �rst search�
In each single step we search the whole breadth of the search tree in depth i �
The sets Si can get quite complex and their BDDs quite large� Even more
so� the size of the BDD for B�T�z� z��� � which describes the relation between
the Si � can quickly become too large to be handled in a graceful manner�
Thus� a number of techniques were invented to limit a potential explosion in
its size� In the sequel some of these techniques and their e�ects are discussed�

�It is called implicit because the calculated sets of states are never explicitly enumer�

ated� but represented as a whole by a BDD� whose size depends more on the structure of

the set� than on its actual size�

��� Variable Order �

��� Variable Order

It is well known that the variable order used in a BDD has a large in�uence on
the size of the BDD� Unfortunately it is still a di�cult problem to �nd even
an near optimal variable order�� Often� a good and acceptable variable or	
der is found by empiric knowledge and experimentation� In our experiments
it has turned out that �uents� which directly in�uence each other� should
be grouped together� In particular� the variables zf and z�f occurring in
B�T�z� z��� should be ordered next to each other order� But how should
these variable groups be arranged� An ordering we call sort ordering led to
good results in several reasoning problems �see Tab� ��� The idea underlying
the sort ordering is to group �uents by their arguments� For example� in the
Gripper class the �uents at�B�� A�� at�B�� B�� carry�B�� G��� carry�B�� G��
should be grouped together� because they share the argument B� � Remem	
ber that the �uent calculus is sorted� The sort ordering works as follows�
First one considers the argument of each �uent which belongs to the largest
sort and sorts the �uents according to this argument� The remaining ambi	
guities are resolved by considering the argument of the second largest sort
and so forth as well as the leading function symbol� For some domains Tab� �
shows some almost dramatic improvements in the size of the BDDs for sort
ordering if compared to a simple lexicographical ordering� The latter results
in grouping �uents with the same leading function symbol together� For
some domains� however� there is little or no improvement� this is usually the
case when there are no large sets of objects as parameters for �uents�

Problem Gripper��� Blocksworld�� get�paid��

lexicographical ������ �����
 �
���
sort ordered ���� ����� �����

Table �� The Size of the BDD for B�T�z� z��� with an ordering of the variables
by name �lexicographical� or with the sort ordering heuristic� The problems are
from the planning problem repository �����

�The problem to �nd the optimal variable order is NP�complete�

�� � OPTIMIZATIONS

��� Partitioning of the Transition Relation

The maximal size of a BDD is exponential in the number of propositional
variables it contains� Thus� the BDD representing B�T�z� z��� � which con	
tains twice as many propositional variables as the BDDs representing the
Si � is prone to get very large� A way to reduce this problem is to divide
the disjunction T�z� z�� into several parts T�� � � � �Tn � which correspond to
subsets of the state update actions� Let Fsu��� � � � � � Fsu�k be a partition of
Fsu and de�ne for all � � i � k

Ti�z� z
�� �

�

��a��Fsu�i

T��a��z� z
��

such that

T�z� z�� �
k�

i��

Ti�z� z
�� �

Thus� ��� is modi�ed to

Zi����z
�� �

k�

i��

����z� Zi��z� � B�Tk�z� z
�����z� �z ��� � ���

Fig� � illustrates the partitioning of the transition relation�

T

T�

T�

T�

T�

Figure �� The partitioning of the transition relation� Each of the codomains of
T� � T� � T� and T� is signi�cantly smaller than the codomain of T �

The positive e�ect of the partitioning is that the actions in each subset
e�ect only a subset of all �uents� Because the maximal size of a BDD is

��� Partitioning of the Transition Relation ��

exponential in the number of propositional variables� the sum of the sizes of
the BDDs corresponding to the partition may be signi�cantly smaller than
the size of the original BDD�

In our implementation the number of partitions is adaptive� �rst the
BDDs B�T��a��z� z

��� for every single action are constructed� then they are
combined until a parameter �partition treshold� is exceeded� In the experi	
ments� partitioning led to a reduction of needed memory in most of the tested
problems as shown in Fig� ��

1000

10000

100000

1e+06

1e+07

1000 10000 100000 1e+06 1e+07

B
D

D
 s

iz
e

partitioning treshold

"assem-x-3"
"blocks10"

"blocks7"
"blocks8"

"gripper-x-20"
"mprime-x-1"

"rat-insulin-adl"

Figure �� The sum of the sizes of the BDDs used to represent the transition
relation in dependence on the parameter 	partitioning treshold
�

On the other hand� a reduction in memory size does not necessarily lead
to a reduction in calculation time as the results depicted in Fig� � indicate�
According to equation ��� the various parts of the partitioned transition rela	
tion have to be put together� and this takes time� Nevertheless splitting can
be useful even if the computation time increases� because of the reduction of
the needed memory to store the BDDs� For example in the case of mprime�
x�� the problem was not manageable under our memory constraints without
partitioning the transition relation�

The idea to partition BDDs can also be applied to the BDDs representing
Zi � We have not yet explored this idea� because in our test problems these
BDDs were only moderately large �i�e�� up to ������� nodes��

We have also implemented an optimization technique called frontier sim�
pli�cation ���� This technique explores the fact� that the algorithm for solving
the entailment problem in the �uent calculus works also if the following two
conditions are enforced for all i � � �

� The set Si contains all states which may be reached by executing i

�� � RESULTS ON THE GRIPPER CLASS

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1000 10000 100000 1e+06 1e+07

re
la

tiv
e

ru
nt

im
e

partitioning size

"assem-x-3"
"blocks10"
"blocks7"
"blocks8"

"gripper-x-20"
"rat-insulin-adl"

Figure �� E�ects of the parameter 	partitioning treshold
 on the calculation time
for several problems� The time is relative to the time taken when no partitioning
is done�

actions� but not by executing less than i actions�

� the set Si does not contain any states which cannot be reached by
executing at most i actions�

The sets Si can be chosen freely within these limitations� Hence� it is desir	
able that the algorithm chooses the Si such that their BDD representations
are as small as possible� Frontier simpli�cation promises to lead to moderate
improvements but we have no experimental data on planning problems yet�

� Results on the Gripper Class

The problems of the Gripper class were quite hard problems for the plan	
ners taking part in the AIPS�� competition� Their di�culty is rooted in
the combinatorial explosion of alternatives due to the existence of two grip	
pers� In Fig�
 the runtimes of these planners� are compared to our system�
BDDplan�	 Only one planner �HSP� was able to solve all of the problems
of this class� but it generated only suboptimal plans by using only one of
the two grippers� whereas BDDplan generates the shortest possible plan by
design�

�See http���ftp�cs�yale�edu�pub�mcdermott�aipscomp�results�html�
�The runtime of BDDplan is measured on a di�erent machine� so it is only accurate

up to a constant factor�

��

10

100

1000

10000

100000

1e+06

1e+07

10 100

ru
nt

im
e

(m
s)

number of balls

"BDDPLAN-adl(opt)"
"BDDPLAN(opt)"

"Blackbox(opt)"
"HSP(non-opt)"

"IPP-adl(non-opt)"
"IPP(non-opt)"

"STAN(opt)"

Figure
� Runtimes di�erent planners on the Gripper problem �in milliseconds�
with di�erent numbers of balls� Planners marked with opt provided optimal �i�e�
shortest� plans� planners marked with �adl work on the sorted version of the
domains� the others on the STRIPS�version�

� Discussion

We have presented in this paper our preliminary �ndings in applying BDD
techniques as an implementation tool for reasoning about situations� actions
and causality in the �uent calculus� and discussed several techniques that
have been successfully used to improve the performance of the implementa	
tion�

We tested our implementation using the problems of the planning contest
on AIPS�� and have received mixed results so far� As discussed in section
�
our planner performed very good in theGripper class� It was able to provide
the shortest solutions to even the most di�cult problems posed in this class�
whereas the planners which have participated in the competition were only
able to solve but the simplest problems or� in the exceptional case of HSP�
provided sub
optimal solutions ignoring the second gripper of the robot� In
some other problem classes� however� our implementation did not outperform
existing systems� On the other hand� we have just started to investigate op	
timization techniques and will continue to do so in the future� In particular�
optimization techniques used in GraphPlan ��� and other propositional
reasoning systems are potential candidates to investigate�

The optimization techniques presented in this paper do not change the
principle of breadth �rst search the algorithm is based on� This has the
pleasant e�ect that

� the algorithm always �nds the shortest plan� and

�� REFERENCES

� it is possible to reuse the results of the computationally intensive for	
ward pass stage� in which the sequence of sets of reachable states
�Si j i � �� is constructed� to either create many possible solutions
to the same reasoning problem or to solve multiple reasoning problems
with the same initial state�

On the other hand� in order to speed up the search it seems one should
give up the concept of breadth �rst search and explore interesting parts of
the search space �rst� This can be done without giving up completeness by
stepwise adding actions to the transition relation� which seem heuristically
relevant for reaching the goal� and explore the subtrees of the search space
generated by these actions �rst�

It should be noted that although we have presented our algorithm in such
a way that there is only a single initial state �i�e�� the set S� is unitary�� the
algorithm itself is by no means restricted to this case� If the initial situation
is only incompletely speci�ed then there are several initial states� which leads
to a set S� containing more than one element�

We are aware of only another approach to reasoning about situations�
actions and causality using BDDs� viz� the system presented in �
� ��� This
system generates so
called universal plans� which consist of a state
action
table that contains for each state the action� which when executed leads to
the goal in the shortest way� This has the advantage that it works for non

deterministic problems as well� We conjecture� that this approach is limited
to less complex reasoning problems� because the executed actions have to be
encoded into the transition relation� This leads to a considerable increase in
the number of propositional variables and� consequently� in the maximal size
of the BDDs� But we have not yet performed direct comparisons to bolster
this conjecture�

To sum up� our BDD based implementation shows some promising initial
results but it is too early to completely evaluate it yet�

References

��� A� Blum and M� Furst� Fast planning through planning graph analysis�
Arti�cial Intelligence� ������
���� �����

��� Randal E� Bryant� Graph
based algorithms for boolean function ma	
nipulation� IEEE Transactions on Computers� ��C	�
�����
���� �����

REFERENCES �

��� J� Burch� E� Clarke� K� McMillan� and D� Dill� Symbolic model checking�
���� states and beyond� Information and Computation� ���������
����
�����

��� J� R� Burch� E� M� Clarke� D� E� Long� K� L� McMillan� and D� L� Dill�
Symbolic model checking for sequential circuit veri�cation� IEEE Trans�
actions on Computer�Aided Design of Integrated Circuits� ���������

���� April �����

�
� A� Cimatti� E� Giunchiglia� F� Giunchiglia� and P� Traverso� �plan	
ning via model checking� A decision procedure for ar� In S� Steel and
R� Alami� editors� Proceedings of the Fourth European Conference on
Planning �ECP���� number ���� in Lecture Notes in Arti�cial Intelli	
gence� pages ���
���� Toulouse� France� Sept� ����� Springer	Verlag�

��� Alessandro Cimatti� Marco Roveri� and Paolo Traverso� Automatic
OBDD	based generation of universal plans on non
deterministic do	
mains� In Proceedings of the Fifteenth National Conference on Arti�
�cial Intelligence �AAAI�	�� Madison� Wisconsin� July ��	�� ����� �to
appear��

��� E� Clarke� O� Grunberg� and D� Long� Model checking� In Proceed�
ings of the International Summer School on Deductive Program Design�
Marktoberdorf� �����

��� T� Eiter� N� Leone� C� Mateis� G� Pfeier� and F� Scarnello� The KR sys	
tem DLV� Progress report� comparisons and benchmarks� In Proceedings
of the
th International Conference on Principles of Knowledge Repre�
sentation and Reasoning� pages ���
���� Morgan Kaufmann Publishers�
�����

��� S� H�olldobler and J� Schneeberger� A new deductive approach to plan	
ning� New Generation Computing� ����

���� ����� A short version
appeared in the Proceedings of the German Workshop on Arti�cial In	
telligence� Informatik Fachberichte ��
� pages ��	��� �����

���� S� H�olldobler and H�	P� St�orr� Solving the entailment problem in
the �uent calculus using binary decision diagrams� Technical Report
WV	��	�
� Arti�cial Intelligence Institute� Computer Science Depart	
ment� Dresden University of Technology� ����� http� pikas�inf�tu	
dresden�de publikationen TR ���� wv	��	�
�ps�

�� REFERENCES

���� Drew McDermott� Planning problem repository�
ftp���ftp�cs�yale�edu�pub�mcdermott�domains��

���� I� Niemel�a and P� Simons� Smodels ! an implementation of the well

founded and stable model semantics� In Proceedings of the
th Interna�
tional Conderence on Logic Programming and Non�monotonic Reason�
ing� pages ���
���� �����

���� B� Selman� H� Levesque� and D� Mitchell� A new method for solving hard
satis�ability problems� In Proceedings of the AAAI National Conference
on Arti�cial Intelligence� pages ���
���� �����

���� M� Thielscher� Introduction to the �uent calculus� Electronic Transac�
tions on Arti�cial Intelligence� ���	������
���� �����

