BDD-based Reasoning in the Fluent Calculus
— First Results
(Extended Abstract)

Steffen Holldobler and Hans—Peter Storr
Artificial Intelligence Institute
Department of Computer Science
Dresden University of Technology
{sh,hans-peter } @Qinf.tu-dresden.de

Abstract

The paper reports on first preliminary results and insights gained in a
project aiming at implementing the fluent calculus using methods and
techniques based on binary decision diagrams. After reporting on an
initial experiment showing promising results we discuss our findings
concerning various techniques and heuristics used to reduce the search
space.

1 Introduction

In recent years we have seen highly advanced and novel implementations of
propositional calculi and systems like, for example, GSAT and its variants
[13], SMODELS [12] or DLv [8], to mention just a few. The implementations
were applied to many interesting fields in Intellectics like, for example, plan-
ning or non-monotonic reasoning. On the other hand, very few results are
reported so far on applying another propositional method in these fields, viz.,
model checking using binary decision diagrams (BDDs), with [5, 6] being an
exception. This comes to a surprise because model checking using binary de-
cision diagrams has significantly improved the performance of algorithms and
enabled the solution of new classes of problems in related areas like formal

2 2 GRIPPER PLANNING PROBLEMS

verification and logic synthesis (see e.g. [3, 4]). Can we adopt the technology
developed for model checking of finite state machines using binary decision
diagrams for the solution of planning problems and, more generally, prob-
lems occurring in reasoning about situations, actions and causality? Can we
enrich these techniques by exploiting the experiences made in the state of
the art implementations of propositional logic calculi and systems mentioned
at the beginning of this paragraph?

In order to answer these and related questions a sound and complete
mapping from (a fragment of) the fluent calculus [9, 14] to propositional logic
is specified in [10] such that the entailment problem in the fluent calculus
can be solved by finding models for the corresponding propositional logic
formula. The propositional logic formulas are represented by reduced and
ordered binary decision diagrams and techniques from model checking are
applied to search for models.

Here we report on initial results, findings and insights gained with the
BDD-based implementation of the fluent calculus. After briefly discussing
the fluent calculus and the implementation using an example from the so—
called GRIPPER—class, we concentrate on two heuristics and techniques which
can be applied to speed up the solution of the planning problem. In partic-
ular, we discuss some results on variable ordering and partitioning of the
transition relation.

In this extended abstract we assume the reader to be familiar with the
fluent calculus and binary decision diagrams, and refer to [14, 10] and [2] as
references respectively.

2 Gripper Planning Problems

In a contest held at ATPS98, planners had to solve various problems, among
which were the problems of the so—called GRIPPER class:

A robot equipped with two grippers G1 and Gy can move between
two rooms A and B . Initially the robot is in room A together
with o number of balls By, ...,B, . The task is to transport
these balls into room B .

The problems differ wrt the number of balls and are then called GRIPPER1,
GRIPPER—2 etc.

We will specify GRIPPER class problems in the fluent calculus in a mo-
ment. Before doing so, however, some notational conventions are helpful.
Words starting with an upper letter denote constants, whereas words start-
ing with a lower letter denote predicate symbols, non—nullary function sym-
bols and variables. Additionally we assume that each variable a denotes an
action, s a situation, f a fluent and z a state. The latter conventions are
encoded as sorts in the fluent calculus (see [14, 10]). All symbols may be
indexed. We also make frequently use of the abbreviation

holds(f,s) = (3z) state(s) = foz . (1)

The initial state of a reasoning problem in the fluent calculus is specified
by an axiom of the form

Fs, = {state(Sy) = t}, (2)

relating the initial situation Sy to a state ¢. ¢ itself is a so—called construc-
tor state term of the form Qo fio...of,, n >0 where the f;’s are pairwise
distinct. If an equation like (2) is given, then ®;(z) denotes the equation
z =t . Turning to the example, the initial state of a GRIPPER class problem
is specified by

Fs, = {state(So) = at(By,A)o ...oat(B,,A)
o free(Gh) o free(Gy) o at-robby(A) 1},

where n is instantiated to some number. Informally, state is a function
mapping situations to states. The fluent at(b,r) states that ball b is at
room 7, free(g) states that gripper g is free and at-robby(r) states that
the robot is at room r .

There are three actions in the GRIPPER class:

e the robot may move from one room to the other.

e the robot may pick up a ball if it is in the same room as the ball and
one of its grippers is empty.

e the robot may drop a ball if it is carrying one.

4 2 GRIPPER PLANNING PROBLEMS

These actions are specified by means of state update axioms:

Fao = { holds(at-robby(ry),s) A —holds(at-robby(rs), s)
— state(do(move(ry,ra)), s) o at-robby(r)
= state(s) o at-robby(rs)
holds(at(b,r),s) A holds(at-robby(r), s)
A holds(free(g),s) N —holds(carry(b, g), s)
— state(do(pick(b,r,g)),s) o at(b,r) o free(g)
= state(s) o carry(b, g)
holds(carry(b, g),s) A holds(at-robby(r), s)
A —holds(at(b,r),s) A —holds(free(g), s)
— state(do(drop(b,r, g)), s) o carry(b, g)
= state(s) o at(b,) o free(g) }

In addition, we need the axioms JF,, specifying the unique name as-
sumption for fluents, F,.s; specifying that all state—terms denote multisets
of fluents and F,,; specifying that in each state each fluent may occur at
most once. Altogether, the axioms of the fluent calculus are

F =Fun U Fpset U Fs, UFs U Fgy.

Reasoning problems themselves are specified as entailment problems in
the fluent calculus. For the GRIPPER class we obtain the entailment problem

F = (3s) holds(at(By, B),s) A ... A holds(at(B,, B), s).
Using abbreviation (1) this can be reformulated as
F E (3s) [(32) state(s) = at(By,B) o z] A...A[(32) state(s) = at(B,, B) o z],
which itself is equivalent to
F E (32) [(3s) state(s) = 2] A[(F2') 2 = at(By,B) o...0 at(B,, B) o 2'].

In general, reasoning in the fluent calculus amounts to solving an entailment
problem of the form

F = (32) [(3s) state(s) = 2] A Pg(2),

where ®;(z) is a goal formula with z as the only free variable. Such prob-
lems have a solution if we find a substitution o for z such that

F = [(3s) state(s) = zo] (3)
and
F E ®g(z0) . (4)

It is sufficient to restrict us to substitutions ¢ which actually denote states
of our reasoning problem, i.e., substitutions which contain solely bindings of
variables of type STATE to constructor state terms. Such substitutions are
called constructor state substitutions. In the sequel, o will always denote a
constructor state substitution.

The main idea of the algorithm presented in [10] is to calculate a sequence
(S; | > 0) of solutions to (3) which correspond to the sets of states reached
after executing 0, 1, 2, ... actions starting in the initial state, until a state
is found which is a goal state, i.e. fulfills (4), or, if no new states are reached,
in which case there is no plan. The implementation of this algorithm is done
by representing these sets by binary decision diagrams (BDDs).

3 The Algorithm

The algorithm for solving entailment problems in the fluent calculus follows
in spirit the algorithm to find reachable states presented in [4]. As mentioned,
the aim is to find the sets S; of solutions for (3) representing states which
can be reached from the initial state after the execution of 7 actions. The
first crucial question to tackle is how to represent these sets using BDDs.

Each solution to (3) is a constructor state substitution {z/t} with a
term ¢ of the form (o f; o... o f,, where the f;’s are pairwise distinct.
On first glance it seems impossible to represent substitutions by finite BDDs
because there are infinitely many terms. Fortunately, however, if there are
only finitely many fluents then there are also only finitely many terms ¢ such
that {z/t} satisfies (3) due to F,,s. Furthermore, because o is an ACI-
symbol in the fluent calculus we do not have to distinguish between terms
which are equivalent under the AC1 equational theory. In other words, a term
t occurring in the codomain of a constructor state substitution is uniquely
characterized by the set of fluents occurring in ¢.

6 3 THE ALGORITHM

This observation opens a possibility for encoding sets of solutions for
the entailment problem in the fluent calculus into a BDD: for each of the
finitely many fluents f which may occur in the binding for a variable z in
a constructor state substitution we introduce a propositional variable z;. A
constructor state substitution o = {z/t} is represented by a valuation B(o)
for these variables such that z; is mapped to T by B(o) iff f occursin t.
! Hence, a set S of constructor state substitutions is represented by a set
of valuations. The set of valuations itself is represented by a propositional
formula Z such that the set of models for Z is the set of valuations. Finally,
Z is represented by a BDD. For example, if the alphabet underlying the
fluent calculus contains precisely the fluent symbols a, b and ¢, then the
set {{z/aob},{z/cob}} is represented by the formula (z, A 2, A —z.) V
(mza A 25 A 2¢) -

The crucial point of our application of methods and techniques based on
BDDs to reasoning in the fluent calculus is the following: We could identify
a class C of formulas over the alphabet underlying the fluent calculus and
a transformation B mapping each F' € C to a propositional logic formula
B(F') such that (i) the class is expressive enough to represent interesting
entailment problems wrt the fluent calculus and (ii) the following result holds.

Lemma 1. Let F € CU{®,(z), Ps(2)} and o a constructor state substi-
tution such that Fo does not contain any free variables. Then,

funUfmset):Fo— Zﬁ B(U)):B(F)

The precise definition of C and B as well as the proof of this lemma is
beyond the scope of this extended abstract and we refer the interested reader
to [10] for all the details.

We turn now to the process of calculating the sequence (S; | i > 0).
So can be immediately derived from ®;(z). But how can we compute S;;;
given S; and F, ? In order to answer this question we define

Ty (27) = [AE) A2 00 =2007] | 5
for each state update axiom ®(a) € F;, of the form

(V)[A(state(s)) — state(do(a,s) o = state(s) o V7]

LA substitution containing more than one binding is represented similarly: for each
variable we introduce a separate set of propositional variables which encodes the binding
of that variable.

Furthermore, for the set F,, we define

T(z,2') = \/ Ty (2,2') . (6)

This definition is motivated by the following result, whose proof can again
be found in [10]

Lemma 2. Let t and t' be two constructor state terms and F = state(s) =
t. Then,

F = state(do(a, 5)) = t" iff Fun U Fruser = Toa)(t,1') for some ¢(a) € Fu.

Because T(z,2') € C we can compute B(T(z,2')) and apply Lemma 1.
Altogether we obtain a procedure for calculating the sequence (S; | ¢ > 0)
as follows. Let {fi,...,f.} be the finite set of fluents in the alphabet un-
derlying the fluent calculus. Furthermore, let F[z, ..., z,| denote a propo-
sitional logic formula F' built over the propositional variables z;, ..., z,.
The sequence (Z; | i > 0) of propositional logic formulas corresponding to
(S; | >0) is defined by

ZolZ] = B(®i(2)) (7)
ZinlZ'] = (32) Z[2] A B(T(2,2)[2, 7], (8)
where Z' is the vector zy,..., 2y, of propositional variables used to encode

z and (32) F is an abbreviation for (3z;) ...(3z,) F with
(Fz) F=F{z/L} v F{z;/T} .

From (7) and (8) the so called forward pass of our planning algorithm
for computing the sequence (S; |7 > 0) can be derived:

1. Define Sy, i.e., the BDD-representation of Z;, such that it contains
only the initial state of the reasoning problem.

2. Recursively calculate 5.1, i.e., the BDD-representation of Z;,; based
on Z; and B(T(z,2')), until either S; overlaps with the set G of
goal states, in which case the reasoning problem is successfully solved
or until a fixpoint is reached, in which case the reasoning problem is
unsolvable.

8 4 OPTIMIZATIONS

& 6 - o
50 51 SQ Sk

Figure 1: An illustration of the forward pass of our algorithm. After three steps
the sets S3 and G overlap.

The algorithm is illustrated in Fig. 1. Starting from the initial state all
reachable states are generated. The algorithm terminates as soon as this set
of states overlaps with the set of goal states or can no longer be expanded.

If the forward pass terminates successfully, then in a second step a shortest
plan is constructed. This is done by choosing a state from G N Sy and
searching for a chain of states through which this state can be reached from
the initial state. This is done by iterating backwards through the sets 5;
generated by the forward pass algorithm. Because this second step is a
computationally (relatively) inexpensive part, we refer the interested reader
to [10], where also the soundness and completeness of the combined algorithm
is established.

4 Optimizations

The planning approach described above is an implicit? breadth first search.
In each single step we search the whole breadth of the search tree in depth i .
The sets S; can get quite complex and their BDDs quite large. Even more
so, the size of the BDD for B(T(z,2')), which describes the relation between
the S;, can quickly become too large to be handled in a graceful manner.
Thus, a number of techniques were invented to limit a potential explosion in
its size. In the sequel some of these techniques and their effects are discussed.

2Tt is called implicit because the calculated sets of states are never explicitly enumer-
ated, but represented as a whole by a BDD, whose size depends more on the structure of
the set, than on its actual size.

4.1 Variable Order 9

4.1 Variable Order

It is well known that the variable order used in a BDD has a large influence on
the size of the BDD. Unfortunately it is still a difficult problem to find even
an near optimal variable order.®> Often, a good and acceptable variable or-
der is found by empiric knowledge and experimentation. In our experiments
it has turned out that fluents, which directly influence each other, should
be grouped together. In particular, the variables z; and z} occurring in
B(T(z,2")) should be ordered next to each other order. But how should
these variable groups be arranged? An ordering we call sort ordering led to
good results in several reasoning problems (see Tab. 1). The idea underlying
the sort ordering is to group fluents by their arguments. For example, in the
GRIPPER class the fluents at(By, A), at(B1, B), carry(By, G1), carry(By, Gs)
should be grouped together, because they share the argument B;. Remem-
ber that the fluent calculus is sorted. The sort ordering works as follows.
First one considers the argument of each fluent which belongs to the largest
sort and sorts the fluents according to this argument. The remaining ambi-
guities are resolved by considering the argument of the second largest sort
and so forth as well as the leading function symbol. For some domains Tab. 1
shows some almost dramatic improvements in the size of the BDDs for sort
ordering if compared to a simple lexicographical ordering. The latter results
in grouping fluents with the same leading function symbol together. For
some domains, however, there is little or no improvement; this is usually the
case when there are no large sets of objects as parameters for fluents.

Problem GRIPPER—10 | BLOCKSWORLD—8 | GET-PAID—4
lexicographical 217409 206995 25633
sort ordered 3087 23373 38367

Table 1: The Size of the BDD for B(T(z,2z')) with an ordering of the variables
by name (lexicographical) or with the sort ordering heuristic. The problems are
from the planning problem repository [11].

3The problem to find the optimal variable order is NP-complete.

10 4 OPTIMIZATIONS

4.2 Partitioning of the Transition Relation

The maximal size of a BDD is exponential in the number of propositional
variables it contains. Thus, the BDD representing B(T(z,2')), which con-
tains twice as many propositional variables as the BDDs representing the
Si, is prone to get very large. A way to reduce this problem is to divide
the disjunction T(z,2') into several parts Ty,..., T, , which correspond to
subsets of the state update actions. Let Fg, 1, ,..., Fga be a partition of
Fsu and define for all 1 <<k

Ti(z, Z’) = \/ T¢(a) (Z, Z’)

¢(a)e-7:su,i
such that
k
T(z,2') = \/Ti(z,z')
i=1
Thus, (8) is modified to
k
Zin[?' = \/((32) Zi[2) A B(Ti(z,2))[2.2)) - (9)
i=1

Fig. 2 illustrates the partitioning of the transition relation.

Figure 2: The partitioning of the transition relation. Each of the codomains of
Ty, Ty, T3 and Ty is significantly smaller than the codomain of T .

The positive effect of the partitioning is that the actions in each subset
effect only a subset of all fluents. Because the maximal size of a BDD is

4.2 Partitioning of the Transition Relation 11

exponential in the number of propositional variables, the sum of the sizes of
the BDDs corresponding to the partition may be significantly smaller than
the size of the original BDD.

In our implementation the number of partitions is adaptive: first the
BDDs B(Tyw)(z,2")) for every single action are constructed, then they are
combined until a parameter “partition treshold” is exceeded. In the experi-
ments, partitioning led to a reduction of needed memory in most of the tested
problems as shown in Fig. 3.

let07 i 4/m———m—4m——m——————————————— :
"assem-x-3"]
L S "blocks10" - i
o, letoe I "blocks7" -
T S ~ "blocks8" -
o 100000 g-- . "gripper-x-20" -~~~
9 B "mprime-x-1" -~
o R — "rat-insulin-adl" -]
10000 ¢ ..o 3
1000 - —_— — — —
1000 10000 100000 1e+06 1le+07

partitioning treshold

Figure 3: The sum of the sizes of the BDDs used to represent the transition
relation in dependence on the parameter “partitioning treshold”.

On the other hand, a reduction in memory size does not necessarily lead
to a reduction in calculation time as the results depicted in Fig. 4 indicate.
According to equation (9) the various parts of the partitioned transition rela-
tion have to be put together, and this takes time. Nevertheless splitting can
be useful even if the computation time increases, because of the reduction of
the needed memory to store the BDDs. For example in the case of MPRIME—
X—1 the problem was not manageable under our memory constraints without
partitioning the transition relation.

The idea to partition BDDs can also be applied to the BDDs representing
Z; . We have not yet explored this idea, because in our test problems these
BDDs were only moderately large (i.e., up to 100.000 nodes).

We have also implemented an optimization technique called frontier sim-
plification [7]. This technique explores the fact, that the algorithm for solving
the entailment problem in the fluent calculus works also if the following two
conditions are enforced for all 7 > 0:

e The set S; contains all states which may be reached by executing 1

12 5 RESULTS ON THE GRIPPER CLASS

1.4 B I I I n n I T
assem-x-3
o l2pre , "blocks10" - T
g 1 oo S e . "blocks7" |
S s "blocks8" -
= 08r T "gripper-x-20" ---- 7
2 o6} e "rat-insulin-adl" ---- |
S 04fb. -]
02| i
O L L P L L P L L P L L P
1000 10000 100000 le+06 le+07

partitioning size

Figure 4: Effects of the parameter “partitioning treshold” on the calculation time
for several problems. The time is relative to the time taken when no partitioning
is done.

actions, but not by executing less than 7 actions.

e the set S; does not contain any states which cannot be reached by
executing at most ¢ actions.

The sets S; can be chosen freely within these limitations. Hence, it is desir-
able that the algorithm chooses the S; such that their BDD representations
are as small as possible. Frontier simplification promises to lead to moderate
improvements but we have no experimental data on planning problems yet.

5 Results on the Gripper Class

The problems of the GRIPPER class were quite hard problems for the plan-
ners taking part in the AIPS98 competition. Their difficulty is rooted in
the combinatorial explosion of alternatives due to the existence of two grip-
pers. In Fig. 5 the runtimes of these planners* are compared to our system,
BDDPLAN.? Only one planner (HSP) was able to solve all of the problems
of this class, but it generated only suboptimal plans by using only one of
the two grippers, whereas BDDPLAN generates the shortest possible plan by
design.

4See http://ftp.cs.yale.edu/pub/mcdermott/aipscomp-results.html.
5The runtime of BDDPLAN is measured on a different machine, so it is only accurate
up to a constant factor.

13

le+07 F T

. B "BDDPLAN-adl(opt)" ——

I 1e+065 _ﬂ,_"/';—/‘“/// "%[B)IDPIL_bANEOpg:: ******
100000 ¢ /_/»/’/'——»—// /.// ackbox(opt)" ------- 1

£ - _.."HSP(non-opt)"
g 10000 "IPP-adl(non-opt)" ----

E L "IPP(non-opt)" -----
S 1000 ¢ o "STAN(opt)" -~~~ -
100 Fo.o i

ot . . L

10 100

number of balls

Figure 5: Runtimes different planners on the Gripper problem (in milliseconds)
with different numbers of balls. Planners marked with opt provided optimal (i.e.
shortest) plans, planners marked with -adl work on the sorted version of the
domains, the others on the STRIPS-version.

6 Discussion

We have presented in this paper our preliminary findings in applying BDD
techniques as an implementation tool for reasoning about situations, actions
and causality in the fluent calculus, and discussed several techniques that
have been successfully used to improve the performance of the implementa-
tion.

We tested our implementation using the problems of the planning contest
on ATPS98 and have received mixed results so far. As discussed in section 5,
our planner performed very good in the GRIPPER class: It was able to provide
the shortest solutions to even the most difficult problems posed in this class,
whereas the planners which have participated in the competition were only
able to solve but the simplest problems or, in the exceptional case of HSP,
provided sub-optimal solutions ignoring the second gripper of the robot. In
some other problem classes, however, our implementation did not outperform
existing systems. On the other hand, we have just started to investigate op-
timization techniques and will continue to do so in the future. In particular,
optimization techniques used in GRAPHPLAN [1] and other propositional
reasoning systems are potential candidates to investigate.

The optimization techniques presented in this paper do not change the
principle of breadth first search the algorithm is based on. This has the
pleasant effect that

e the algorithm always finds the shortest plan, and

14 REFERENCES

e it is possible to reuse the results of the computationally intensive for-
ward pass stage, in which the sequence of sets of reachable states
(S; | i > 0) is constructed, to either create many possible solutions
to the same reasoning problem or to solve multiple reasoning problems
with the same initial state.

On the other hand, in order to speed up the search it seems one should
give up the concept of breadth first search and explore interesting parts of
the search space first. This can be done without giving up completeness by
stepwise adding actions to the transition relation, which seem heuristically
relevant for reaching the goal, and explore the subtrees of the search space
generated by these actions first.

It should be noted that although we have presented our algorithm in such
a way that there is only a single initial state (i.e., the set Sy is unitary), the
algorithm itself is by no means restricted to this case. If the initial situation
is only incompletely specified then there are several initial states, which leads
to a set Sy containing more than one element.

We are aware of only another approach to reasoning about situations,
actions and causality using BDDs, viz. the system presented in [5, 6]. This
system generates so—called universal plans, which consist of a state—action
table that contains for each state the action, which when executed leads to
the goal in the shortest way. This has the advantage that it works for non—
deterministic problems as well. We conjecture, that this approach is limited
to less complex reasoning problems, because the executed actions have to be
encoded into the transition relation. This leads to a considerable increase in
the number of propositional variables and, consequently, in the maximal size
of the BDDs. But we have not yet performed direct comparisons to bolster
this conjecture.

To sum up, our BDD based implementation shows some promising initial
results but it is too early to completely evaluate it yet.

References

[1] A. Blum and M. Furst. Fast planning through planning graph analysis.
Artificial Intelligence, 90:281-300, 1997.

[2] Randal E. Bryant. Graph-based algorithms for boolean function ma-
nipulation. IEEFE Transactions on Computers, 8(C-35):677-691, 1986.

REFERENCES 15

3]

7]

[10]

J. Burch, E. Clarke, K. McMillan, and D. Dill. Symbolic model checking;:
10% states and beyond. Information and Computation, 98(2):142-170,
1992.

J. R. Burch, E. M. Clarke, D. E. Long, K. L. McMillan, and D. L. Dill.
Symbolic model checking for sequential circuit verification. IEEE Trans-
actions on Computer-Aided Design of Integrated Circuits, 13(4):401—
424, April 1994.

A. Cimatti, E. Giunchiglia, F. Giunchiglia, and P. Traverso. ”plan-
ning via model checking: A decision procedure for ar. In S. Steel and
R. Alami, editors, Proceedings of the Fourth European Conference on
Planning (ECP97), number 1348 in Lecture Notes in Artificial Intelli-
gence, pages 130-142, Toulouse, France, Sept. 1997. Springer-Verlag.

Alessandro Cimatti, Marco Roveri, and Paolo Traverso. Automatic
OBDD-based generation of universal plans on non-deterministic do-
mains. In Proceedings of the Fifteenth National Conference on Arti-
ficial Intelligence (AAAI98), Madison, Wisconsin, July 26-30 1998. (to

appear).

E. Clarke, O. Grunberg, and D. Long. Model checking. In Proceed-
ings of the International Summer School on Deductive Program Design,
Marktoberdorf, 1994.

T. Eiter, N. Leone, C. Mateis, G. Pfeier, and F. Scarnello. The KR sys-
tem DLV: Progress report, comparisons and benchmarks. In Proceedings
of the 6th International Conference on Principles of Knowledge Repre-
sentation and Reasoning, pages 406-417. Morgan Kaufmann Publishers,
1998.

S. Holldobler and J. Schneeberger. A new deductive approach to plan-
ning. New Generation Computing, 8:225-244, 1990. A short version
appeared in the Proceedings of the German Workshop on Artificial In-
telligence, Informatik Fachberichte 216, pages 63-73, 1989.

S. Holldobler and H.-P. Storr. Solving the entailment problem in
the fluent calculus using binary decision diagrams. Technical Report
WV-99-05, Artificial Intelligence Institute, Computer Science Depart-
ment, Dresden University of Technology, 1999. http://pikas.inf.tu-
dresden.de/publikationen/TR /1999 /wv-99-05.ps.

16 REFERENCES

[11] Drew McDermott. Planning problem repository.
ftp://ftp.cs.yale.edu/pub/mcdermott/domains/.

[12] I. Niemeld and P. Simons. Smodels — an implementation of the well-
founded and stable model semantics. In Proceedings of the 4th Interna-
tional Conderence on Logic Programming and Non—monotonic Reason-
ing, pages 420-429, 1997.

[13] B. Selman, H. Levesque, and D. Mitchell. A new method for solving hard
satisfiability problems. In Proceedings of the AAAI National Conference
on Artificial Intelligence, pages 440-446, 1992.

[14] M. Thielscher. Introduction to the fluent calculus. Electronic Transac-
tions on Artificial Intelligence, 2(3-4):179-192, 1998.

